zoukankan      html  css  js  c++  java
  • ACM HOJ 1018 Big Number

    Big Number

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 10639    Accepted Submission(s): 4780


    Problem Description
    In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
     

    Input
    Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
     

    Output
    The output contains the number of digits in the factorial of the integers appearing in the input.
     

    Sample Input
    2 10 20
     

    Sample Output
    7 19
     

    Source
     

    Recommend
    JGShining

    斯特灵公式是一条用来取n阶乘近似值数学公式。一般来说,当n很大的时候,n阶乘的计算量十分大,所以斯特灵公式十分好用,而且,即使在

     

    n很小的时候,斯特灵公式的取值已经十分准确。

    公式为:

    这就是说,对于足够大的整数n,这两个数互为近似值。更加精确地:

    或者:

     

     

     

    超强大的公式
    n=2*pi*n)^1/2 *(n/e)^n *e^(a/12*n)
    
     
    

    #include<iostream>

    #include<cmath>

    using namespace std;

    const double PI=acos(-1.0);

    const double e=exp(1.0);

    int main()

    {

        int T,n;

        cin>>T;

        while(T--)

        {

            cin>>n;

            if(n!=1)

              cout<<(int)(0.5*log10(2*PI*n)+n*log10(n/e)+1)<<endl;

            else cout<<1<<endl;

        }

        return 0;   

    }   

     

     

    #include<stdio.h>
    #include
    <math.h>
    using namespace std;
    int main()
    {
    int n,i;
    double sum;
    int T;
    scanf(
    "%d",&T);
    while(T--)
    {
    sum
    =1;
    scanf(
    "%d",&n);
    if(n==1){printf("1\n");continue;}
    for(i=2;i<=n;i++)
    {
    sum
    +=log10((double)i);
    }
    printf(
    "%d\n",(int)sum);
    }
    return 0;
    }

    #include<cmath>
    #include
    <stdio.h>
    #include
    <iostream>
    using namespace std;
    const double PI=acos(-1.0);
    const double e=exp(1.0);
    int main()
    {
    int T,n,i;
    int cnt;
    scanf(
    "%d",&T);
    while(T--)
    {
    scanf(
    "%d",&n);
    if(n==1){printf("1\n");continue;}//这个不能少,否则会错误,WR了好几次
    cnt=(int)(0.5*log10(2*PI*n)+n*log10(n/e)+1);
    printf(
    "%d\n",cnt);

    }
    return 0;
    }

    #include<stdio.h>
    #include
    <cmath>
    using namespace std;
    const double PI=acos(-1.0);
    const double e=exp(1.0);

    int main()
    {
    int n,cnt;
    int T;
    scanf(
    "%d",&T);
    while(T--)
    {
    scanf(
    "%d",&n);
    cnt
    =(int)(0.5*log10(2*PI*n)+n*log10(n/e))+1;
    printf(
    "%d\n",cnt);
    }
    return 0;
    }

  • 相关阅读:
    UI第十七讲.图片异步加载(包括第三方), KVO, KVC
    第二十一讲.UICollectionView(集合视图)以及瀑布流效果, 通知中心(NSNotificationCenter).
    UI第十九讲:数据库
    UI第十八讲.初级数据持久化 (沙盒, 简单写入对象, 归解档, NSUserDefaults写入读取文件 )
    第十四讲(下) 可视化方式的实现通讯录.(及storyboard方式)
    第十六讲.网络编程 (HTTP协议)
    wslgit
    MyBatis时间比较
    layer开启与关闭加载层
    MyBatis中choose when正确写法
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2114998.html
Copyright © 2011-2022 走看看