zoukankan      html  css  js  c++  java
  • HDU-1874-畅通工程续 (最短路 贝尔曼Bellman_Ford)

    畅通工程续

    Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 53520 Accepted Submission(s): 19997

    Problem Description
    某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

    现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。

    Input
    本题目包含多组数据,请处理到文件结束。
    每组数据第一行包含两个正整数N和M (0 < N < 200,0 < M< 1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
    接下来是M行道路信息。每一行有三个整数A,B,X(0 < =A,B < N,A!=B,0 < X < 10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
    再接下一行有两个整数S,T(0 < =S,T < N),分别代表起点和终点。

    Output
    对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.

    Sample Input
    3 3
    0 1 1
    0 2 3
    1 2 1
    0 2
    3 1
    0 1 1
    1 2

    Sample Output
    2
    -1

    dijkstra是利用从起点开始遍历每次可以到达的点来更新最短路,并每次都用一个新的最短路去更新到达其他节点的最短路。

    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述
    这里写图片描述

    只需要进行n-1轮就可以了。因为在一个含有n个顶点的图中任意两点之间的最短路径最多包含n-1条边

    n-1次松弛后可能包含回路吗?
    这里写图片描述

    这里写图片描述

    判断负权回路
    这里写图片描述

    #include<stdio.h>///Bellman_Ford
    #include<algorithm>
    #include<string.h>
    #define Maxn 2300
    #define maxn 230
    using namespace std;
    int n,m,num;
    struct Edge
    {
        int from,to,val;
        Edge(int a=0,int b=0,int c=0):from(a),to(b),val(c) {}///从某点到某点的有向边的价值
    } edge[Maxn];///边的个数存有向边,因此要比最大无向边数量*2多
    int dist[maxn];
    bool Bellman_Ford(int start)
    {
        memset(dist,0x3f,sizeof(dist));
        dist[start]=0;
        for(int i=1; i<n; i++)///除起始点外剩下n-1次数更新
        {
            for(int j=0; j<num; j++)///有num条边
            {
                if(dist[edge[j].to]>dist[edge[j].from]+edge[j].val)
                    dist[edge[j].to]=dist[edge[j].from]+edge[j].val;///更新最短路
            }
        }
        for(int i=0; i<num; i++)if(dist[edge[i].to]>dist[edge[i].from]+edge[i].val)return false;///判断负环
        return true;
    }
    int main()
    {
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            int from,to,val;
            num=0;
            for(int i=0; i<m; i++)
            {
                scanf("%d%d%d",&from,&to,&val);
                edge[num++]=Edge(from,to,val);///加边(无向边)
                edge[num++]=Edge(to,from,val);
            }
            int start,ends;
            scanf("%d%d",&start,&ends);
            Bellman_Ford(start);
            printf("%d
    ",dist[ends]==0x3f3f3f3f?-1:dist[ends]);///判断是否可以到达某个点
        }
    }
    
  • 相关阅读:
    Windows API 的数据类型与 Delphi 数据类型对照表
    Delphi 编译错误信息表
    Delphi中的容器类
    Delphi 快捷键
    代码折叠
    [转]Delphi中record的使用
    [转]常用公共函数单元
    Delphi 运行时错误信息表
    C#调用Win32 的API函数User32.dll
    [转]Delphi程序启动参数的读取
  • 原文地址:https://www.cnblogs.com/kuronekonano/p/11794319.html
Copyright © 2011-2022 走看看