zoukankan      html  css  js  c++  java
  • 《DSP using MATLAB》Problem5.33

            代码:

    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 5.33 
    
    ');
    
    banner();
    %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    
    % -------------------------------------------------------------
    %   x3(n) --- N-point circular convolution of x1(n) an x2(n)  
    %   x4(n) ---          Linear convolution     
    %   e(n)  ---       error sequence                            
    % -------------------------------------------------------------
    
    N = 8;
    n1 = [0:3];
    x1 = [2, 1, 1, 2];
    N1 = length(x1);
    
    n2 = [0:3];
    x2 = [1, -1, -1, 1];
    N2 = length(x2);
    
    
    % --------------------------------------------
    %        1st way ---- time domain
    % --------------------------------------------
    N
    y1 = circonvt(x1, x2, N)
    ny1 = [0:N-1];
    
    
    % --------------------------------------------
    %   2nd way ----  DFT method
    % --------------------------------------------
    
    y2 = circonvf(x1, x2, N);
    ny2 = [0:N-1];
    
    
    % --------------------------------------------
    %   3rd way --- circulant matrix
    % --------------------------------------------
    
    y3 = circonvt_v3(x1, x2, N);
    ny3 = [0:N-1];
    
    % ---------------------------------------
    %     Linear convolution
    % ---------------------------------------
    
    [y4, ny4] = conv_m(x1, n1, x2, n2);
    
    %e1 = y1 - y4(1:N);
    
    
    
    figure('NumberTitle', 'off', 'Name', 'P5.33 x1(n) and x2(n) N=4')
    set(gcf,'Color','white'); 
    subplot(2,1,1); stem(n1, x1); 
    xlabel('n'); ylabel('x1(n)');
    title('x1(n)');  grid on;
    subplot(2,1,2); stem(n2, x2);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('n'); ylabel('x2(n)');
    title('x2(n)');  grid on;
    
    
    figure('NumberTitle', 'off', 'Name', 'P5.33 Cir-Conv(N=8) and Linear-Conv')
    set(gcf,'Color','white'); 
    subplot(2,2,1); stem(ny1, y1); 
    xlabel('n'); ylabel('y1(n)');
    title('Cir-Conv (Time domain), y1(n)');  grid on;
    subplot(2,2,2); stem(ny2, y2);  
    %axis([0, N, 0, 1]);
    xlabel('n'); ylabel('y2(n)');
    title('Cir-Conv (DFT method), y2(n)');  grid on;
    subplot(2,2,3); stem(ny3, y3);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('n'); ylabel('y3(n)');
    title('Cir-Conv (circulant matrix), y3(n)');  grid on;
    subplot(2,2,4); stem(ny4, y4);  
    %axis([-N/2, N/2, -0.5, 50.5]);
    xlabel('n'); ylabel('y4(n)');
    title('Linear-Conv, y4(n)');  grid on;
    

      运行结果:

            y1--圆周卷积,N=4;y4---线性卷积,长度为7

            由下图可知,当N=7时,序列的圆周卷积和线性卷积结果相同。

             结论:两序列x1长N1,x2长N2,当N至少取N1+N2-1做圆周卷积,结果和线性卷积相同。

    牢记: 1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。
  • 相关阅读:
    DDT驱动selenium自动化测试
    python 对Excel表格的读取
    python 对Excel表格的写入
    selenium对百度进行登录注销
    selenium的八大定位元素的方式
    selenium打开Chrome浏览器并最大化
    行列式计算的归纳
    C标准库函数getchar()
    测试必备-抓包工具的使用
    uiautomator2使用教程
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/9491283.html
Copyright © 2011-2022 走看看