You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.
The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.
For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5] (length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).
Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n−1)(n−1) segments has the maximal possible length.
The first line contains a single integer nn (2≤n≤3⋅1052≤n≤3⋅105) — the number of segments in the sequence.
Each of the next nn lines contains two integers lili and riri (0≤li≤ri≤1090≤li≤ri≤109) — the description of the ii-th segment.
Print a single integer — the maximal possible length of the intersection of (n−1)(n−1) remaining segments after you remove exactly one segment from the sequence.
4
1 3
2 6
0 4
3 3
1
5
2 6
1 3
0 4
1 20
0 4
2
3
4 5
1 2
9 20
0
2
3 10
1 5
7
In the first example you should remove the segment [3;3][3;3], the intersection will become [2;3][2;3] (length 11). Removing any other segment will result in the intersection [3;3][3;3] (length 00).
In the second example you should remove the segment [1;3][1;3] or segment [2;6][2;6], the intersection will become [2;4][2;4] (length 22) or [1;3][1;3] (length 22), respectively. Removing any other segment will result in the intersection [2;3][2;3] (length 11).
In the third example the intersection will become an empty set no matter the segment you remove.
In the fourth example you will get the intersection [3;10][3;10] (length 77) if you remove the segment [1;5][1;5] or the intersection [1;5][1;5] (length 44) if you remove the segment [3;10][3;10].
题意:已知n个区间,求删去一个区间后剩余的区间交的区域最大值
分析:求去掉某段区间后剩余的区间的相交区域,相当于求这个区间前面所有区间的相交区域和这个区间后的所有相交区域的交集
在开始的时候枚举出所有点,关于这点前的相交区域pre[i-1],关于这点后的相交区域pos[i+1]
然后枚举pre[i-1]与pos[i+1]相交区域的最大值
AC代码:
#include <map> #include <set> #include <stack> #include <cmath> #include <queue> #include <cstdio> #include <vector> #include <string> #include <bitset> #include <cstring> #include <iomanip> #include <iostream> #include <algorithm> #define ls (r<<1) #define rs (r<<1|1) #define debug(a) cout << #a << " " << a << endl using namespace std; typedef long long ll; const ll maxn = 3e5+10; const double eps = 1e-8; const ll mod = 1e9 + 7; const ll inf = 1e9; const double pi = acos(-1.0); struct node { ll x, y; }; node a[maxn], pre[maxn], pos[maxn]; int main() { ll n, maxle1 = 0, minri1 = 1e9+10, maxle2 = 0, minri2 = 1e9+10; scanf("%lld",&n); pos[n+1].y = pre[0].y = 1e9+10; for( ll i = 1; i <= n; i ++ ) { scanf("%lld%lld",&a[i].x,&a[i].y); maxle1 = max(maxle1,a[i].x), minri1 = min(minri1,a[i].y); pre[i].x = maxle1, pre[i].y = minri1; } for( ll i = n; i >= 1; i -- ) { maxle2 = max(maxle2,a[i].x), minri2 = min(minri2,a[i].y); pos[i].x = maxle2, pos[i].y = minri2; } ll ans = 0; for( ll i = 1; i <= n; i ++ ) { ll le = max(pre[i-1].x,pos[i+1].x), ri = min(pre[i-1].y,pos[i+1].y); ans = max(ans,ri-le); } printf("%lld ",ans); return 0; }