zoukankan      html  css  js  c++  java
  • LeetCode Course Schedule II

    There are a total of n courses you have to take, labeled from 0 to n - 1.

    Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

    Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.

    There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.

    For example:

    2, [[1,0]]

    There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1]

    4, [[1,0],[2,0],[3,1],[3,2]]

    There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0. So one correct course order is [0,1,2,3]. Another correct ordering is[0,2,1,3].

    Note:
    The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.

    click to show more hints.

    Hints:
      1. This problem is equivalent to finding the topological order in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
      2. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
      3. Topological sort could also be done via BFS.

    时间500ms,有些夸张

    class Node {
    public:
        int fanin;
        vector<int> fanout;
        Node() : fanin(0){}
    };
    
    class Solution {
    public:
        vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
            vector<Node> nodes(numCourses);
            vector<int> res;
            int elen = prerequisites.size();
            for (auto pr : prerequisites) {
                int dst = pr.first, src = pr.second;
                nodes[src].fanout.push_back(dst);
                nodes[dst].fanin++;
            }
            queue<int> zero;
            int taken_cnt = 0;
            // find all zero in-degree nodes
            for (int i=0; i<numCourses; i++) {
                if (nodes[i].fanin == 0 && !nodes[i].fanout.empty()) {
                    zero.push(i);
                }
                if (!nodes[i].fanout.empty() || nodes[i].fanin) {
                    taken_cnt++;
                } else {
                    res.push_back(i);
                }
            }
    
            // bfs search
            while (!zero.empty()) {
                int current = zero.front();
                taken_cnt--;
                zero.pop();
                res.push_back(current);
                Node& cn = nodes[current];
                for (int i=0; i<cn.fanout.size(); i++) {
                    if (--nodes[cn.fanout[i]].fanin == 0) {
                        zero.push(cn.fanout[i]);
                    }
                }
            }
            
            // cyclic
            if (taken_cnt > 0) {
                return vector<int>();
            }
            
            return res;
        }
    };
  • 相关阅读:
    JS基础18-网站效果
    JS基础17-网站效果
    JS基础16-轮播图的实现(二维数组实现多变量同时滚动)
    JS基础15-事件监听
    JS基础14-对DOM的增改和删除工作
    JS基础13-DOM访问表格子元素的常用属性和方法
    python之路--装饰器函数
    python之路 函数进阶
    python之路 初始函数
    python之字符编码
  • 原文地址:https://www.cnblogs.com/lailailai/p/4503638.html
Copyright © 2011-2022 走看看