zoukankan      html  css  js  c++  java
  • ConcurrentHashMap源码解读

    一、计算初始容量
     
    1)源代码    
    tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)
    //计算c最近的2的N次方的值,作为初始容量
    private static final int tableSizeFor(int c) {
        int n = c - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
    2) 对与右移的知识请到我的另一篇文章中查看
    3)或 运算符,只要有一个为1,则结果为1,否则为0
    4)假设传进来的是25,二进制为011001
      
    我们最终需要获得最大的二进制为 100000,作为集合的初始值
    
    如何计算得到这个最大的二进制呢?
    答:终极思想用移位得出011111 然后 +1
    如何得出  011111呢?思想:将最高位1以后的数字通过移位操作全都变成1,
    将最高位1向右移动4次,每一次得到N位1(通过与原来数据或操作)保留下来
    步骤:
    1 取原始数据 011001 最高位的1 ,然后右移一位结果:001100
    2 001100或操作 011001 = 011101
    3 让数据011101 ,右移2位得到,然后重复1、2操作得到011111
    4 最后的结果011111,加上1得到1000000
    
    这个步骤基本上和上面的源代码相同,只不过这里只是执行了2个步骤,源代码中执行了4个步骤
    为什么是4个步骤呢? 因为正数二进制是32位,而我们想31位全都变成1,那必须执行4个步骤,然后最后+1

     二、数据放入结合

      

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        //参数校验
        if (key == null || value == null) throw new NullPointerException();
        // 计算key对应的hash值,这个值会决定放入的数据对应,数组的那一个位置
        int hash = spread(key.hashCode());
        
        int binCount = 0;
        //赋值,并且无条件循环,直到满足一定条件才会退出
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            //判断数组是否已经初始化,如果没有则初始化数据结构
            if (tab == null || (n = tab.length) == 0)
                //初始化数据结构 数组见下面的 三
                tab = initTable();
            // (n - 1) & hash 这个相当于数组的hash下标, 获取key对应数组下标位置是否有数据
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                //没有数据,则使用创建一个Node对象,然后case将数据赋值到数组对应位置
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                //锁住 key数组对应下标的第一个对象
                synchronized (f) {
                    //双重判断,以防f中途发生变化
                    if (tabAt(tab, i) == f) {
                        //f 这个对象的hash值 大于0 ,当连表迁移的时候这个值会发生变化
                        if (fh >= 0) {
                            binCount = 1;
                            //遍历 查找到的这个连表
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                //如果连表中一个对象的 key和hash与传进来的key和hash一样
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)//如果 参数覆盖为false
                                        //用value覆盖原来对象的val
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                //如果查找到最后一个节点
                                if ((e = e.next) == null) {
                                    //创建一个新节点放到连表中
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        //如果是红黑树
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        //新添加节点以后,将节点总数+1
        addCount(1L, binCount);
        return null;
    }
     
    三、初始化数据结构
    //方法可能会有多个线程进入
    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        //线程进来以后,如果数组没有初始化则一直循环
        while ((tab = table) == null || tab.length == 0) {
            //sizeCtl=-1<0  则集合正在初始化,当前线程让出cpu执行权限
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
    
            //cas操作,只有一个线程可以设置sizeCtl值为-1,进入的线程会对数组进行初始化
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    //二次判断,防止初始化的线程初始化完成以后,改变 sizeCtl 数值以后,其他线程进入到这个方法再次进行初始化
                    if ((tab = table) == null || tab.length == 0) {
                        //计算初始化数组的容量
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        //初始化的数组赋值给对象的table变量,这个table使用volatile修饰的,一旦赋值以后其他线程不会进入到这个while循环里面了
                        table = tab = nt;
                        sc = n - (n >>> 2);
                    }
                } finally {
                    //恢复sizeCtl这个变量
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

     四、总数+1

     //主线:计数需要baseCount+1,当有线程竞争的时候则计数放到counterCells里面
    private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        // 第一个线程和与第一个线程同时进到这个位置的线程 counterCells才能=null,后面的线程 (as = counterCells) != null一直为true
        // 即后面的线程才会执行 这段代码:!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)
        if ((as = counterCells) != null ||
            //当counterCells已经被初始化的时候,每次过来的线程没有竞争的情况执行这个语句 将baseCount直接+1,如果+1执行失败,则执行内部代码块
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            //
            if (as == null || (m = as.length - 1) < 0 || //判断counterCells 这个变量为空
                (a = as[ThreadLocalRandom.getProbe() & m]) == null || //判断 需要写入数值的counterCells数组对应的位置为空
                !(uncontended =   U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { //将 counterCells数组对应的位置的CounterCell值+1
                // 初始化counterCells,初始化counterCells对应下面的counterCell对象,或者在counterCells 对应节点数值+x操作
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            //计算总数 counterCells和baseCount 数据相加 获取总数
            s = sumCount();
        }
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            //计算得到的数据总数大于初始容量sizeCtl,并且table不为空,需要扩容了
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) { //如果正在扩容
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        transfer(tab, nt);
                }
                //获取锁
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                             (rs << RESIZE_STAMP_SHIFT) + 2))
                    //扩容
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }
    五、初始化counterCells,初始化counterCells对应下面的counterCell对象,或者在counterCells 对应节点数值+x操作
    private final void fullAddCount(long x, boolean wasUncontended) {
        int h;
        if ((h = ThreadLocalRandom.getProbe()) == 0) {
            ThreadLocalRandom.localInit();      // force initialization
            h = ThreadLocalRandom.getProbe();
            wasUncontended = true;
        }
        boolean collide = false;                // True if last slot nonempty
        //循环配合cas操作
        for (;;) {
            CounterCell[] as; CounterCell a; int n; long v;
            //判断counterCells 不为空,对数组进行数值+操作
            if ((as = counterCells) != null && (n = as.length) > 0) {
                // 需要操作的counterCells的下标对象为空
                if ((a = as[(n - 1) & h]) == null) {
                    if (cellsBusy == 0) {            // Try to attach new Cell
                        //创建一个CounterCell
                        CounterCell r = new CounterCell(x); // Optimistic create
                        if (cellsBusy == 0 &&
                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) { //cellsBusy标识位设置为1,进行加锁
                            boolean created = false;
                            try {               // Recheck under lock
                                CounterCell[] rs; int m, j;
                                if ((rs = counterCells) != null &&
                                    (m = rs.length) > 0 &&
                                    rs[j = (m - 1) & h] == null) {
                                    //创建好的 CounterCell放到数组对应的位置
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                cellsBusy = 0;
                            }
                            if (created)
                                break;
                            continue;           // Slot is now non-empty
                        }
                    }
                    collide = false;
                }
                else if (!wasUncontended)       // CAS already known to fail
                    wasUncontended = true;      // Continue after rehash
                //对应的 CounterCell对象数据+x,如果成功则跳出循环
                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
                    break;
                // 如果数组CounterCell[]的长度已经大于计算机cpu的核大小,则重新循环不会执行下面扩容
                else if (counterCells != as || n >= NCPU)
                    collide = false;            // At max size or stale
                else if (!collide) //就是增加一次循环,增加数值+x的几率,如果失败则会执行下面的扩容
                    collide = true;
                else if (cellsBusy == 0 &&
                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                    try {
                        //扩容CounterCell[]数组,以增加cpu的使用效率
                        if (counterCells == as) {// Expand table unless stale
                            CounterCell[] rs = new CounterCell[n << 1];
                            for (int i = 0; i < n; ++i)
                                rs[i] = as[i];
                            counterCells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                h = ThreadLocalRandom.advanceProbe(h);
            }
              //判断 锁标识位没有被占用,counterCells==null
            else if (cellsBusy == 0 && counterCells == as &&
                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {//加锁
                boolean init = false;
                try {                           // Initialize table
                    if (counterCells == as) {
                        //初始化counterCells
                        CounterCell[] rs = new CounterCell[2];
                        //创建一个CounterCell放入数组
                        rs[h & 1] = new CounterCell(x);
                        counterCells = rs;
                        init = true;
                    }
                } finally {
                    cellsBusy = 0;
                }
                //防止其他线程进来直接break了
                if (init)
                    break;
            }
            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
                break;                          // Fall back on using base
        }
    }

    六、扩容

    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        //计算最小扩容大小
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];//创建一个数组,容量为原来的2倍
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            //扩容后的数组
            nextTable = nextTab;
            //需要转移的索引数量
            transferIndex = n;
        }
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                //从最大索引位置计算,如果下一个迁移的索引已经为0,则退出循环
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }
     
     
     
     
     
     
     
     
  • 相关阅读:
    C/C++中volatile关键字详解(转)
    Spring中 @Autowired标签与 @Resource标签 的区别(转)
    [转]各种互斥量的总结
    nginx限制ip访问(转)
    HDU 4833 Best Financing (DP)
    HDU 4832 Chess (DP)
    HDU 4831 Scenic Popularity
    POJ 2155 Matrix (二维线段树)
    POJ 2155 Matrix (二维树状数组)
    HDU 4819 Mosaic (二维线段树)
  • 原文地址:https://www.cnblogs.com/lean-blog/p/13897363.html
Copyright © 2011-2022 走看看