zoukankan      html  css  js  c++  java
  • Codeforces Round #309 (Div. 2)D

    C. Kyoya and Colored Balls
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color ibefore drawing the last ball of color i + 1 for all i from 1 to k - 1. Now he wonders how many different ways this can happen.

    Input

    The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.

    Then, k lines will follow. The i-th line will contain ci, the number of balls of the i-th color (1 ≤ ci ≤ 1000).

    The total number of balls doesn't exceed 1000.

    Output

    A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.

    Examples
    input
    3
    2
    2
    1
    output
    3
    input
    4
    1
    2
    3
    4
    output
    1680
    Note

    In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:


    1 2 1 2 3
    1 1 2 2 3
    2 1 1 2 3

     题意:有k种不同颜色的球,然后给出不同颜色的球的个数,把球排成一列,要求第i+1种颜色的球的最后一个一定要在第i种颜色的球的最后面一个的后面,求摆放的方案数mod1e9+7

    题解:下标大的先放,对与每一种球它的最后一个球的位置是确定的,然后就是在剩下的位置中挑剩下的球的个数个位置C(sum-1,a[i]-1),然后相乘。关建是求通过乘法逆元组合数。

    #include<bits/stdc++.h>
    #define pb push_back
    #define ll long long
    #define PI 3.14159265
    using namespace std;
    const int maxn=1e3+5;
    const int mod=1e9+7;
    const int inf=0x3f3f3f3f;
    int n,sum;
    int a[maxn];
    ll b[(int)1e6+5]; 
    ll ans=1;
    ll poww(ll x,ll k)
    {
        ll t=1;
        while(k)
        {
            if(k%2)
            {
                t=(t*x)%mod;
            }
            x=(x*x)%mod;
            k/=2;
        }
        return t;
     } 
    ll c(ll x,ll y)//组合数公式
    {
        if(x<y)return 0;
        if(y==0)return 1;
        ll t=1;
        ll tmp=(b[x-y]*b[y])%mod; 
        t=(b[x]*poww(tmp,mod-2))%mod;//费马小定理求乘法逆元 
        return t;
    } 
    int main()
    {    
        std::ios::sync_with_stdio(false);
        cin.tie(0);
        cout.tie(0);
        cin>>n;
        for(int i=1;i<=n;i++)
        {
            cin>>a[i];
            sum+=a[i];
        }
        b[1]=1;b[0]=1;
        for(int i=2;i<=sum;i++)
        {
            b[i]=(b[i-1]*i)%mod; 
        }
        for(int i=n;i>=1;i--)
        {
            ll tmp=c(sum-1,a[i]-1);
            sum-=a[i];
            ans=(ans*tmp)%mod;
        }
        cout<<ans<<'
    ';
        return 0;
    }
  • 相关阅读:
    浅谈jQuery easyui datagrid操作单元格样式
    关于翻页之后表格重新加载,之前选中的项丢失的问题处理
    jquery操作复选框(checkbox)的12个小技巧总结
    项目管理学习笔记之四.风险管理
    c#基于udp实现的p2p语音聊天工具
    漫说好管理vs.坏管理
    linux安装tomcat
    wifi共享精灵2014.04.25.001已经更新,wifi热点中文名走起!
    NYOJ 589 糖果
    MacBook Pro安装Photoshop且支持Retina有你们说的那么困难吗!
  • 原文地址:https://www.cnblogs.com/lhclqslove/p/7631612.html
Copyright © 2011-2022 走看看