源码地址:https://github.com/nalin1096/path_planning
路径规划
使用ROS实现了基于RRT路径规划算法。
发行版 - indigo
算法在有一个障碍的环境找到优化的路径。算法可视化在RVIZ完成,代码是用C ++编写。
包有两个可执行文件:
1 ros_node2 env_node
RVIZ参数:
1 Frame_id =“path_planner”
2 marker_topic =“path_planner_rrt”
说明:
- 打开终端,输入
- $ roscore
- 打开新的终端并转到catkin工作区:
- $ catkin_make
- $ source ./devel/setup.bash
- $ rosrun path_planning env_node
- 打开新的终端
- $ rosrun rviz rviz
- 在RVIZ窗口,更改:
- 在全局选项固定框架“path_planner”
- 添加标记和标记改变主题,以“path_planner_rrt”
- 打开新的终端
- $ rosrun path_planning rrt_node
如果想修改环境environment,如下:
#include <ros/ros.h> #include <visualization_msgs/Marker.h> #include <path_planning/rrt.h> #include <path_planning/obstacles.h> #include <geometry_msgs/Point.h> #include <iostream> #include <cmath> #include <math.h> #include <stdlib.h> #include <unistd.h> #include <vector> using namespace rrt; void initializeMarkers(visualization_msgs::Marker &boundary, visualization_msgs::Marker &obstacle) { //init headers boundary.header.frame_id = obstacle.header.frame_id = "path_planner"; boundary.header.stamp = obstacle.header.stamp = ros::Time::now(); boundary.ns = obstacle.ns = "path_planner"; boundary.action = obstacle.action = visualization_msgs::Marker::ADD; boundary.pose.orientation.w = obstacle.pose.orientation.w = 1.0; //setting id for each marker boundary.id = 110; obstacle.id = 111; //defining types boundary.type = visualization_msgs::Marker::LINE_STRIP; obstacle.type = visualization_msgs::Marker::LINE_LIST; //setting scale boundary.scale.x = 1; obstacle.scale.x = 0.2; //assigning colors boundary.color.r = obstacle.color.r = 0.0f; boundary.color.g = obstacle.color.g = 0.0f; boundary.color.b = obstacle.color.b = 0.0f; boundary.color.a = obstacle.color.a = 1.0f; } vector<geometry_msgs::Point> initializeBoundary() { vector<geometry_msgs::Point> bondArray; geometry_msgs::Point point; //first point point.x = 0; point.y = 0; point.z = 0; bondArray.push_back(point); //second point point.x = 0; point.y = 100; point.z = 0; bondArray.push_back(point); //third point point.x = 100; point.y = 100; point.z = 0; bondArray.push_back(point); //fourth point point.x = 100; point.y = 0; point.z = 0; bondArray.push_back(point); //first point again to complete the box point.x = 0; point.y = 0; point.z = 0; bondArray.push_back(point); return bondArray; } vector<geometry_msgs::Point> initializeObstacles() { vector< vector<geometry_msgs::Point> > obstArray; vector<geometry_msgs::Point> obstaclesMarker; obstacles obst; obstArray = obst.getObstacleArray(); for(int i=0; i<obstArray.size(); i++) { for(int j=1; j<5; j++) { obstaclesMarker.push_back(obstArray[i][j-1]); obstaclesMarker.push_back(obstArray[i][j]); } } return obstaclesMarker; } int main(int argc,char** argv) { //initializing ROS ros::init(argc,argv,"env_node"); ros::NodeHandle n; //defining Publisher ros::Publisher env_publisher = n.advertise<visualization_msgs::Marker>("path_planner_rrt",1); //defining markers visualization_msgs::Marker boundary; visualization_msgs::Marker obstacle; initializeMarkers(boundary, obstacle); //initializing rrtTree RRT myRRT(2.0,2.0); int goalX, goalY; goalX = goalY = 95; boundary.points = initializeBoundary(); obstacle.points = initializeObstacles(); env_publisher.publish(boundary); env_publisher.publish(obstacle); while(ros::ok()) { env_publisher.publish(boundary); env_publisher.publish(obstacle); ros::spinOnce(); ros::Duration(1).sleep(); } return 1; }
障碍物obstacles,可修改调整障碍物个数等:
#include <path_planning/obstacles.h> #include <geometry_msgs/Point.h> vector< vector<geometry_msgs::Point> > obstacles::getObstacleArray() { vector<geometry_msgs::Point> obstaclePoint; geometry_msgs::Point point; //first point point.x = 50; point.y = 50; point.z = 0; obstaclePoint.push_back(point); //second point point.x = 50; point.y = 70; point.z = 0; obstaclePoint.push_back(point); //third point point.x = 80; point.y = 70; point.z = 0; obstaclePoint.push_back(point); //fourth point point.x = 80; point.y = 50; point.z = 0; obstaclePoint.push_back(point); //first point again to complete the box point.x = 50; point.y = 50; point.z = 0; obstaclePoint.push_back(point); obstacleArray.push_back(obstaclePoint); return obstacleArray; }
RRT:
#include <path_planning/rrt.h> #include <math.h> #include <cstddef> #include <iostream> using namespace rrt; /** * default constructor for RRT class * initializes source to 0,0 * adds sorce to rrtTree */ RRT::RRT() { RRT::rrtNode newNode; newNode.posX = 0; newNode.posY = 0; newNode.parentID = 0; newNode.nodeID = 0; rrtTree.push_back(newNode); } /** * default constructor for RRT class * initializes source to input X,Y * adds sorce to rrtTree */ RRT::RRT(double input_PosX, double input_PosY) { RRT::rrtNode newNode; newNode.posX = input_PosX; newNode.posY = input_PosY; newNode.parentID = 0; newNode.nodeID = 0; rrtTree.push_back(newNode); } /** * Returns the current RRT tree * @return RRT Tree */ vector<RRT::rrtNode> RRT::getTree() { return rrtTree; } /** * For setting the rrtTree to the inputTree * @param rrtTree */ void RRT::setTree(vector<RRT::rrtNode> input_rrtTree) { rrtTree = input_rrtTree; } /** * to get the number of nodes in the rrt Tree * @return tree size */ int RRT::getTreeSize() { return rrtTree.size(); } /** * adding a new node to the rrt Tree */ void RRT::addNewNode(RRT::rrtNode node) { rrtTree.push_back(node); } /** * removing a node from the RRT Tree * @return the removed tree */ RRT::rrtNode RRT::removeNode(int id) { RRT::rrtNode tempNode = rrtTree[id]; rrtTree.erase(rrtTree.begin()+id); return tempNode; } /** * getting a specific node * @param node id for the required node * @return node in the rrtNode structure */ RRT::rrtNode RRT::getNode(int id) { return rrtTree[id]; } /** * return a node from the rrt tree nearest to the given point * @param X position in X cordinate * @param Y position in Y cordinate * @return nodeID of the nearest Node */ int RRT::getNearestNodeID(double X, double Y) { int i, returnID; double distance = 9999, tempDistance; for(i=0; i<this->getTreeSize(); i++) { tempDistance = getEuclideanDistance(X,Y, getPosX(i),getPosY(i)); if (tempDistance < distance) { distance = tempDistance; returnID = i; } } return returnID; } /** * returns X coordinate of the given node */ double RRT::getPosX(int nodeID) { return rrtTree[nodeID].posX; } /** * returns Y coordinate of the given node */ double RRT::getPosY(int nodeID) { return rrtTree[nodeID].posY; } /** * set X coordinate of the given node */ void RRT::setPosX(int nodeID, double input_PosX) { rrtTree[nodeID].posX = input_PosX; } /** * set Y coordinate of the given node */ void RRT::setPosY(int nodeID, double input_PosY) { rrtTree[nodeID].posY = input_PosY; } /** * returns parentID of the given node */ RRT::rrtNode RRT::getParent(int id) { return rrtTree[rrtTree[id].parentID]; } /** * set parentID of the given node */ void RRT::setParentID(int nodeID, int parentID) { rrtTree[nodeID].parentID = parentID; } /** * add a new childID to the children list of the given node */ void RRT::addChildID(int nodeID, int childID) { rrtTree[nodeID].children.push_back(childID); } /** * returns the children list of the given node */ vector<int> RRT::getChildren(int id) { return rrtTree[id].children; } /** * returns number of children of a given node */ int RRT::getChildrenSize(int nodeID) { return rrtTree[nodeID].children.size(); } /** * returns euclidean distance between two set of X,Y coordinates */ double RRT::getEuclideanDistance(double sourceX, double sourceY, double destinationX, double destinationY) { return sqrt(pow(destinationX - sourceX,2) + pow(destinationY - sourceY,2)); } /** * returns path from root to end node * @param endNodeID of the end node * @return path containing ID of member nodes in the vector form */ vector<int> RRT::getRootToEndPath(int endNodeID) { vector<int> path; path.push_back(endNodeID); while(rrtTree[path.front()].nodeID != 0) { //std::cout<<rrtTree[path.front()].nodeID<<endl; path.insert(path.begin(),rrtTree[path.front()].parentID); } return path; }
RRT节点:
#include <ros/ros.h> #include <visualization_msgs/Marker.h> #include <geometry_msgs/Point.h> #include <path_planning/rrt.h> #include <path_planning/obstacles.h> #include <iostream> #include <cmath> #include <math.h> #include <stdlib.h> #include <unistd.h> #include <vector> #include <time.h> #define success false #define running true using namespace rrt; bool status = running; void initializeMarkers(visualization_msgs::Marker &sourcePoint, visualization_msgs::Marker &goalPoint, visualization_msgs::Marker &randomPoint, visualization_msgs::Marker &rrtTreeMarker, visualization_msgs::Marker &finalPath) { //init headers sourcePoint.header.frame_id = goalPoint.header.frame_id = randomPoint.header.frame_id = rrtTreeMarker.header.frame_id = finalPath.header.frame_id = "path_planner"; sourcePoint.header.stamp = goalPoint.header.stamp = randomPoint.header.stamp = rrtTreeMarker.header.stamp = finalPath.header.stamp = ros::Time::now(); sourcePoint.ns = goalPoint.ns = randomPoint.ns = rrtTreeMarker.ns = finalPath.ns = "path_planner"; sourcePoint.action = goalPoint.action = randomPoint.action = rrtTreeMarker.action = finalPath.action = visualization_msgs::Marker::ADD; sourcePoint.pose.orientation.w = goalPoint.pose.orientation.w = randomPoint.pose.orientation.w = rrtTreeMarker.pose.orientation.w = finalPath.pose.orientation.w = 1.0; //setting id for each marker sourcePoint.id = 0; goalPoint.id = 1; randomPoint.id = 2; rrtTreeMarker.id = 3; finalPath.id = 4; //defining types rrtTreeMarker.type = visualization_msgs::Marker::LINE_LIST; finalPath.type = visualization_msgs::Marker::LINE_STRIP; sourcePoint.type = goalPoint.type = randomPoint.type = visualization_msgs::Marker::SPHERE; //setting scale rrtTreeMarker.scale.x = 0.2; finalPath.scale.x = 1; sourcePoint.scale.x = goalPoint.scale.x = randomPoint.scale.x = 2; sourcePoint.scale.y = goalPoint.scale.y = randomPoint.scale.y = 2; sourcePoint.scale.z = goalPoint.scale.z = randomPoint.scale.z = 1; //assigning colors sourcePoint.color.r = 1.0f; goalPoint.color.g = 1.0f; randomPoint.color.b = 1.0f; rrtTreeMarker.color.r = 0.8f; rrtTreeMarker.color.g = 0.4f; finalPath.color.r = 0.2f; finalPath.color.g = 0.2f; finalPath.color.b = 1.0f; sourcePoint.color.a = goalPoint.color.a = randomPoint.color.a = rrtTreeMarker.color.a = finalPath.color.a = 1.0f; } vector< vector<geometry_msgs::Point> > getObstacles() { obstacles obst; return obst.getObstacleArray(); } void addBranchtoRRTTree(visualization_msgs::Marker &rrtTreeMarker, RRT::rrtNode &tempNode, RRT &myRRT) { geometry_msgs::Point point; point.x = tempNode.posX; point.y = tempNode.posY; point.z = 0; rrtTreeMarker.points.push_back(point); RRT::rrtNode parentNode = myRRT.getParent(tempNode.nodeID); point.x = parentNode.posX; point.y = parentNode.posY; point.z = 0; rrtTreeMarker.points.push_back(point); } bool checkIfInsideBoundary(RRT::rrtNode &tempNode) { if(tempNode.posX < 0 || tempNode.posY < 0 || tempNode.posX > 100 || tempNode.posY > 100 ) return false; else return true; } bool checkIfOutsideObstacles(vector< vector<geometry_msgs::Point> > &obstArray, RRT::rrtNode &tempNode) { double AB, AD, AMAB, AMAD; for(int i=0; i<obstArray.size(); i++) { AB = (pow(obstArray[i][0].x - obstArray[i][1].x,2) + pow(obstArray[i][0].y - obstArray[i][1].y,2)); AD = (pow(obstArray[i][0].x - obstArray[i][3].x,2) + pow(obstArray[i][0].y - obstArray[i][3].y,2)); AMAB = (((tempNode.posX - obstArray[i][0].x) * (obstArray[i][1].x - obstArray[i][0].x)) + (( tempNode.posY - obstArray[i][0].y) * (obstArray[i][1].y - obstArray[i][0].y))); AMAD = (((tempNode.posX - obstArray[i][0].x) * (obstArray[i][3].x - obstArray[i][0].x)) + (( tempNode.posY - obstArray[i][0].y) * (obstArray[i][3].y - obstArray[i][0].y))); //(0<AM⋅AB<AB⋅AB)∧(0<AM⋅AD<AD⋅AD) if((0 < AMAB) && (AMAB < AB) && (0 < AMAD) && (AMAD < AD)) { return false; } } return true; } void generateTempPoint(RRT::rrtNode &tempNode) { int x = rand() % 150 + 1; int y = rand() % 150 + 1; //std::cout<<"Random X: "<<x <<endl<<"Random Y: "<<y<<endl; tempNode.posX = x; tempNode.posY = y; } bool addNewPointtoRRT(RRT &myRRT, RRT::rrtNode &tempNode, int rrtStepSize, vector< vector<geometry_msgs::Point> > &obstArray) { int nearestNodeID = myRRT.getNearestNodeID(tempNode.posX,tempNode.posY); RRT::rrtNode nearestNode = myRRT.getNode(nearestNodeID); double theta = atan2(tempNode.posY - nearestNode.posY,tempNode.posX - nearestNode.posX); tempNode.posX = nearestNode.posX + (rrtStepSize * cos(theta)); tempNode.posY = nearestNode.posY + (rrtStepSize * sin(theta)); if(checkIfInsideBoundary(tempNode) && checkIfOutsideObstacles(obstArray,tempNode)) { tempNode.parentID = nearestNodeID; tempNode.nodeID = myRRT.getTreeSize(); myRRT.addNewNode(tempNode); return true; } else return false; } bool checkNodetoGoal(int X, int Y, RRT::rrtNode &tempNode) { double distance = sqrt(pow(X-tempNode.posX,2)+pow(Y-tempNode.posY,2)); if(distance < 3) { return true; } return false; } void setFinalPathData(vector< vector<int> > &rrtPaths, RRT &myRRT, int i, visualization_msgs::Marker &finalpath, int goalX, int goalY) { RRT::rrtNode tempNode; geometry_msgs::Point point; for(int j=0; j<rrtPaths[i].size();j++) { tempNode = myRRT.getNode(rrtPaths[i][j]); point.x = tempNode.posX; point.y = tempNode.posY; point.z = 0; finalpath.points.push_back(point); } point.x = goalX; point.y = goalY; finalpath.points.push_back(point); } int main(int argc,char** argv) { //initializing ROS ros::init(argc,argv,"rrt_node"); ros::NodeHandle n; //defining Publisher ros::Publisher rrt_publisher = n.advertise<visualization_msgs::Marker>("path_planner_rrt",1); //defining markers visualization_msgs::Marker sourcePoint; visualization_msgs::Marker goalPoint; visualization_msgs::Marker randomPoint; visualization_msgs::Marker rrtTreeMarker; visualization_msgs::Marker finalPath; initializeMarkers(sourcePoint, goalPoint, randomPoint, rrtTreeMarker, finalPath); //setting source and goal sourcePoint.pose.position.x = 2; sourcePoint.pose.position.y = 2; goalPoint.pose.position.x = 95; goalPoint.pose.position.y = 95; rrt_publisher.publish(sourcePoint); rrt_publisher.publish(goalPoint); ros::spinOnce(); ros::Duration(0.01).sleep(); srand (time(NULL)); //initialize rrt specific variables //initializing rrtTree RRT myRRT(2.0,2.0); int goalX, goalY; goalX = goalY = 95; int rrtStepSize = 3; vector< vector<int> > rrtPaths; vector<int> path; int rrtPathLimit = 1; int shortestPathLength = 9999; int shortestPath = -1; RRT::rrtNode tempNode; vector< vector<geometry_msgs::Point> > obstacleList = getObstacles(); bool addNodeResult = false, nodeToGoal = false; while(ros::ok() && status) { if(rrtPaths.size() < rrtPathLimit) { generateTempPoint(tempNode); //std::cout<<"tempnode generated"<<endl; addNodeResult = addNewPointtoRRT(myRRT,tempNode,rrtStepSize,obstacleList); if(addNodeResult) { // std::cout<<"tempnode accepted"<<endl; addBranchtoRRTTree(rrtTreeMarker,tempNode,myRRT); // std::cout<<"tempnode printed"<<endl; nodeToGoal = checkNodetoGoal(goalX, goalY,tempNode); if(nodeToGoal) { path = myRRT.getRootToEndPath(tempNode.nodeID); rrtPaths.push_back(path); std::cout<<"New Path Found. Total paths "<<rrtPaths.size()<<endl; //ros::Duration(10).sleep(); //std::cout<<"got Root Path"<<endl; } } } else //if(rrtPaths.size() >= rrtPathLimit) { status = success; std::cout<<"Finding Optimal Path"<<endl; for(int i=0; i<rrtPaths.size();i++) { if(rrtPaths[i].size() < shortestPath) { shortestPath = i; shortestPathLength = rrtPaths[i].size(); } } setFinalPathData(rrtPaths, myRRT, shortestPath, finalPath, goalX, goalY); rrt_publisher.publish(finalPath); } rrt_publisher.publish(sourcePoint); rrt_publisher.publish(goalPoint); rrt_publisher.publish(rrtTreeMarker); //rrt_publisher.publish(finalPath); ros::spinOnce(); ros::Duration(0.01).sleep(); } return 1; }
头文件定义类如下:
obstacles:
#ifndef OBSTACLES_H #define OBSTACLES_H #include <geometry_msgs/Point.h> #include <vector> #include <iostream> using namespace std; class obstacles { public: /** Default constructor */ obstacles() {} /** Default destructor */ virtual ~obstacles() {} vector< vector<geometry_msgs::Point> > getObstacleArray(); protected: private: vector< vector<geometry_msgs::Point> > obstacleArray; }; #endif // OBSTACLES_H
rrt:
#ifndef rrt_h #define rrt_h #include <vector> using namespace std; namespace rrt { class RRT{ public: RRT(); RRT(double input_PosX, double input_PosY); struct rrtNode{ int nodeID; double posX; double posY; int parentID; vector<int> children; }; vector<rrtNode> getTree(); void setTree(vector<rrtNode> input_rrtTree); int getTreeSize(); void addNewNode(rrtNode node); rrtNode removeNode(int nodeID); rrtNode getNode(int nodeID); double getPosX(int nodeID); double getPosY(int nodeID); void setPosX(int nodeID, double input_PosX); void setPosY(int nodeID, double input_PosY); rrtNode getParent(int nodeID); void setParentID(int nodeID, int parentID); void addChildID(int nodeID, int childID); vector<int> getChildren(int nodeID); int getChildrenSize(int nodeID); int getNearestNodeID(double X, double Y); vector<int> getRootToEndPath(int endNodeID); private: vector<rrtNode> rrtTree; double getEuclideanDistance(double sourceX, double sourceY, double destinationX, double destinationY); }; }; #endif
其他代码:
CMakeLists:
cmake_minimum_required(VERSION 2.8.3)
project(path_planning)
## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
roscpp
std_msgs
visualization_msgs
)
## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)
## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()
################################################
## Declare ROS messages, services and actions ##
################################################
## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
## your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
## * add a build_depend and a run_depend tag for each package in MSG_DEP_SET
## * If MSG_DEP_SET isn't empty the following dependencies might have been
## pulled in transitively but can be declared for certainty nonetheless:
## * add a build_depend tag for "message_generation"
## * add a run_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
## * add "message_generation" and every package in MSG_DEP_SET to
## find_package(catkin REQUIRED COMPONENTS ...)
## * add "message_runtime" and every package in MSG_DEP_SET to
## catkin_package(CATKIN_DEPENDS ...)
## * uncomment the add_*_files sections below as needed
## and list every .msg/.srv/.action file to be processed
## * uncomment the generate_messages entry below
## * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)
## Generate messages in the 'msg' folder
# add_message_files(
# FILES
# Message1.msg
# Message2.msg
# )
## Generate services in the 'srv' folder
# add_service_files(
# FILES
# Service1.srv
# Service2.srv
# )
## Generate actions in the 'action' folder
# add_action_files(
# FILES
# Action1.action
# Action2.action
# )
## Generate added messages and services with any dependencies listed here
# generate_messages(
# DEPENDENCIES
# std_msgs# visualization_msgs
# )
###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if you package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
INCLUDE_DIRS include
LIBRARIES path_planning
CATKIN_DEPENDS roscpp std_msgs visualization_msgs
DEPENDS system_lib
)
###########
## Build ##
###########
## Specify additional locations of header files
## Your package locations should be listed before other locations
# include_directories(include)
include_directories(include
${catkin_INCLUDE_DIRS}
)
## Declare a cpp library
add_library(path_planning
src/rrt.cpp
src/obstacles.cpp
)
## Declare a cpp executable
# add_executable(path_planning_node src/path_planning_node.cpp)
add_executable(rrt_node src/rrt_node.cpp)
add_dependencies(rrt_node path_planning)
target_link_libraries(rrt_node path_planning ${catkin_LIBRARIES} )
add_executable(env_node src/environment.cpp)
add_dependencies(env_node path_planning)
target_link_libraries(env_node path_planning ${catkin_LIBRARIES} )
## Add cmake target dependencies of the executable/library
## as an example, message headers may need to be generated before nodes
# add_dependencies(path_planning_node path_planning_generate_messages_cpp)
## Specify libraries to link a library or executable target against
# target_link_libraries(path_planning_node
# ${catkin_LIBRARIES}
# )
#############
## Install ##
#############
# all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html
## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# install(PROGRAMS
# scripts/my_python_script
# DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark executables and/or libraries for installation
# install(TARGETS path_planning path_planning_node
# ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
# RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )
## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
# DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
# FILES_MATCHING PATTERN "*.h"
# PATTERN ".svn" EXCLUDE
# )
## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
# # myfile1
# # myfile2
# DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )
#############
## Testing ##
#############
## Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_path_planning.cpp)
# if(TARGET ${PROJECT_NAME}-test)
# target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()
## Add folders to be run by python nosetests
# catkin_add_nosetests(test)
package:<?xml version="1.0"?> <package> <name>path_planning</name> <version>1.0.0</version> <description>A path planning algorithm using RRT visualized in RVIZ</description> <!-- One maintainer tag required, multiple allowed, one person per tag --> <!-- Example: --> <!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> --> <maintainer email="nalin00796@gmail.com">Nalin Gupta</maintainer> <!-- One license tag required, multiple allowed, one license per tag --> <!-- Commonly used license strings: --> <!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 --> <license>TODO</license> <!-- Url tags are optional, but mutiple are allowed, one per tag --> <!-- Optional attribute type can be: website, bugtracker, or repository --> <!-- Example: --> <!-- <url type="website">http://wiki.ros.org/path_planning</url> --> <!-- Author tags are optional, mutiple are allowed, one per tag --> <!-- Authors do not have to be maintianers, but could be --> <!-- Example: --> <!-- <author email="jane.doe@example.com">Jane Doe</author> --> <!-- The *_depend tags are used to specify dependencies --> <!-- Dependencies can be catkin packages or system dependencies --> <!-- Examples: --> <!-- Use build_depend for packages you need at compile time: --> <!-- <build_depend>message_generation</build_depend> --> <!-- Use buildtool_depend for build tool packages: --> <!-- <buildtool_depend>catkin</buildtool_depend> --> <!-- Use run_depend for packages you need at runtime: --> <!-- <run_depend>message_runtime</run_depend> --> <!-- Use test_depend for packages you need only for testing: --> <!-- <test_depend>gtest</test_depend> --> <buildtool_depend>catkin</buildtool_depend> <build_depend>roscpp</build_depend> <build_depend>std_msgs</build_depend> <build_depend>visualization_msgs</build_depend> <run_depend>roscpp</run_depend> <run_depend>std_msgs</run_depend> <run_depend>visualization_msgs</run_depend> <!-- The export tag contains other, unspecified, tags --> <export> <!-- You can specify that this package is a metapackage here: --> <!-- <metapackage/> --> <!-- Other tools can request additional information be placed here --> </export> </package>