zoukankan      html  css  js  c++  java
  • DP习题笔记

    Q1:Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

    class Solution {
    public:
        int numSquares(int n) {
            if (n == 0) return 0;
            
            vector<int> dp(n+1, 0);
            
            for (int i=0; i<=n; ++i) {
                dp[i] = i;
                for (int j = 2; j<=sqrt(i); ++j) {
                    dp[i] = min(dp[i], 1 + dp[i - j*j]);
                }
            }
            
            return dp[n];
        }
    };

     Q2:A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK<= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    一道求最长上升子序列的DP题,主要思想是找出转移方程dp[i]=max(dp[j]+1) (j<i且a[j]<a[i])

    #include <iostream>
    #include <vector>
    using namespace std;
    int main(int argc, char **argv)
    {
        vector<int> a = { 1,2,3,5,9,4,8,10,14,2,5,2 };
        vector<int> dp(a.size(),0);
        dp[0] = 1;
        int ml = 1;
        for (int i = 1; i < a.size(); ++i) {
            for (int j = 0; j < i; ++j) {
                if (a[j] <= a[i])
                    dp[i] = max(dp[j] + 1, dp[i]);
            }
            ml = max(ml, dp[i]);
        }
        cout << ml;
        return 0;
    }
  • 相关阅读:
    第二次冲刺周期站立会议(3)
    第二次冲刺周期站立会议(2)
    第二次冲刺周期站立会议(1)
    测试计划
    对各组第一次冲刺周期的评价
    团队绩效评估计划
    学校网站UI设计分析
    站立会议(10)
    Bower和Gulp集成前端资源
    Laravel的学习网站推荐
  • 原文地址:https://www.cnblogs.com/lightmonster/p/10657216.html
Copyright © 2011-2022 走看看