zoukankan      html  css  js  c++  java
  • DP习题笔记

    Q1:Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

    class Solution {
    public:
        int numSquares(int n) {
            if (n == 0) return 0;
            
            vector<int> dp(n+1, 0);
            
            for (int i=0; i<=n; ++i) {
                dp[i] = i;
                for (int j = 2; j<=sqrt(i); ++j) {
                    dp[i] = min(dp[i], 1 + dp[i - j*j]);
                }
            }
            
            return dp[n];
        }
    };

     Q2:A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK<= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    一道求最长上升子序列的DP题,主要思想是找出转移方程dp[i]=max(dp[j]+1) (j<i且a[j]<a[i])

    #include <iostream>
    #include <vector>
    using namespace std;
    int main(int argc, char **argv)
    {
        vector<int> a = { 1,2,3,5,9,4,8,10,14,2,5,2 };
        vector<int> dp(a.size(),0);
        dp[0] = 1;
        int ml = 1;
        for (int i = 1; i < a.size(); ++i) {
            for (int j = 0; j < i; ++j) {
                if (a[j] <= a[i])
                    dp[i] = max(dp[j] + 1, dp[i]);
            }
            ml = max(ml, dp[i]);
        }
        cout << ml;
        return 0;
    }
  • 相关阅读:
    jquery 不支持$.browser
    js 双向绑定
    css3 省略号
    js生成txt文件
    Browser-sync
    Generator & yield write in sync way
    Charles
    缓动函数与动画
    让Safari使用Chrome的代理
    React 同构
  • 原文地址:https://www.cnblogs.com/lightmonster/p/10657216.html
Copyright © 2011-2022 走看看