zoukankan      html  css  js  c++  java
  • DP习题笔记

    Q1:Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...) which sum to n.

    class Solution {
    public:
        int numSquares(int n) {
            if (n == 0) return 0;
            
            vector<int> dp(n+1, 0);
            
            for (int i=0; i<=n; ++i) {
                dp[i] = i;
                for (int j = 2; j<=sqrt(i); ++j) {
                    dp[i] = min(dp[i], 1 + dp[i - j*j]);
                }
            }
            
            return dp[n];
        }
    };

     Q2:A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK<= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    一道求最长上升子序列的DP题,主要思想是找出转移方程dp[i]=max(dp[j]+1) (j<i且a[j]<a[i])

    #include <iostream>
    #include <vector>
    using namespace std;
    int main(int argc, char **argv)
    {
        vector<int> a = { 1,2,3,5,9,4,8,10,14,2,5,2 };
        vector<int> dp(a.size(),0);
        dp[0] = 1;
        int ml = 1;
        for (int i = 1; i < a.size(); ++i) {
            for (int j = 0; j < i; ++j) {
                if (a[j] <= a[i])
                    dp[i] = max(dp[j] + 1, dp[i]);
            }
            ml = max(ml, dp[i]);
        }
        cout << ml;
        return 0;
    }
  • 相关阅读:
    9、二叉排序树的创建、插入、遍历
    8、判断两个链表是否相交
    7、判断链表是否有环
    6、查找单链表中倒数第n个节点
    5、单链表的反转
    4、KMP(看毛片)算法
    3、希尔排序
    2、快速排序
    json字符串转为json对象
    json对象转化为字符串过程分析
  • 原文地址:https://www.cnblogs.com/lightmonster/p/10657216.html
Copyright © 2011-2022 走看看