zoukankan      html  css  js  c++  java
  • Rooks-LightOj1005(规律)

    A rook is a piece used in the game of chess which is played on a board of square grids. A rook can only move vertically or horizontally from its current position and two rooks attack each other if one is on the path of the other. In the following figure, the dark squares represent the reachable locations for rook R1 from its current position. The figure also shows that the rook R1 and R2 are in attacking positions where R1 and R3 are not. R2 and R3 are also in non-attacking positions.

    Now, given two numbers n and k, your job is to determine the number of ways one can put k rooks on an n x n chessboard so that  no two of them are in attacking positions.

    Input

    Input starts with an integer T (≤ 350), denoting the number of test cases.

    Each case contains two integers n (1 ≤ n ≤ 30) and k (0 ≤ k ≤ n2).

    Output

    For each case, print the case number and total number of ways one can put the given number of rooks on a chessboard of the given size so that no two of them are in attacking positions. You may safely assume that this number will be less than 1017.

    Sample Input

    Output for Sample Input

    8

    1 1

    2 1

    3 1

    4 1

    4 2

    4 3

    4 4

    4 5

    Case 1: 1

    Case 2: 4

    Case 3: 9

    Case 4: 16

    Case 5: 72

    Case 6: 96

    Case 7: 24

    Case 8: 0

    自我感觉这题大水,30 15这个数据都过不了   然后就对了

    但是我感觉人家写的很好,我当时只想到怎么算出来的   并不知道怎么写的

    其实就是规律C(m,n)*A(m,n)


    #include<iostream> #include
    <algorithm> #include<cstdio> #include<cstring> #include<cmath> #include<map> #include<vector> #include<stack> #include<queue> using namespace std; const int INF=0x3f3f3f3f; int main() { long long T,n,m,sum; int t=1; scanf("%lld",&T); while(T--) { sum=1; scanf("%lld %lld",&n,&m); for(int i=n;i>(n-m);i--) { sum*=i; } for(int i=1;i<=m;i++) { sum/=i; } for(int i=n;i>(n-m);i--) { sum*=i; } printf("Case %d: %lld ",t++,sum); } return 0; }
  • 相关阅读:
    悼念512汶川大地震遇难同胞——珍惜现在,感恩生活--hdu2191(多重背包模板)
    Gunner II--hdu5233(map&vector/二分)
    Geometric Progression---cf 567C(求组合方式,map离散)
    Guess Your Way Out! II---cf 558D (区间覆盖,c++STL map 的使用)
    Amr and Chemistry---cf558C(暴力,加技巧)
    汉诺塔IV---hdu2077
    Safe Or Unsafe--hdu2527(哈夫曼树求WPL)
    Divisibility by Eight---cf550C(被8整除 暴力)
    Charles使用技巧
    RabbitMQ-高级特性(六)
  • 原文地址:https://www.cnblogs.com/linliu/p/4914217.html
Copyright © 2011-2022 走看看