zoukankan      html  css  js  c++  java
  • BZOJ 1797 最小割(最小割割边唯一性判定)

    问题一:是否存在一个最小代价路径切断方案,其中该道路被切断? 问题二:是否对任何一个最小代价路径切断方案,都有该道路被切断? 现在请你回答这两个问题。

    最小割唯一性判定

    jcvb:

    在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号。显然有id[s]!=id[t](否则s到t有通路,能继续增广)。

    ①对于任意一条满流边(u,v),(u,v)能够出现在某个最小割集中,当且仅当id[u]!=id[v];
    ②对于任意一条满流边(u,v),(u,v)必定出现在最小割集中,当且仅当id[u]==id[s]且id[v]==id[t]。

    <==将每个SCC缩成一个点,得到的新图就只含有满流边了。那么新图的任一s-t割都对应原图的某个最小割,从中任取一个把id[u]和id[v]割开的割即可证明。


    <==:假设将(u,v)的边权增大,那么残余网络中会出现s->u->v->t的通路,从而能继续增广,于是最大流流量(也就是最小割容量)会增大。这即说明(u,v)是最小割集中必须出现的边。

    # include <cstdio>
    # include <cstring>
    # include <cstdlib>
    # include <iostream>
    # include <vector>
    # include <queue>
    # include <stack>
    # include <map>
    # include <set>
    # include <cmath>
    # include <algorithm>
    using namespace std;
    # define lowbit(x) ((x)&(-x))
    # define pi 3.1415926535
    # define eps 1e-9
    # define MOD 100000007
    # define INF 1000000000
    # define mem(a,b) memset(a,b,sizeof(a))
    # define FOR(i,a,n) for(int i=a; i<=n; ++i)
    # define FO(i,a,n) for(int i=a; i<n; ++i)
    # define bug puts("H");
    # define lch p<<1,l,mid
    # define rch p<<1|1,mid+1,r
    # define mp make_pair
    # define pb push_back
    typedef pair<int,int> PII;
    typedef vector<int> VI;
    # pragma comment(linker, "/STACK:1024000000,1024000000")
    typedef long long LL;
    int Scan() {
        int res=0, flag=0;
        char ch;
        if((ch=getchar())=='-') flag=1;
        else if(ch>='0'&&ch<='9') res=ch-'0';
        while((ch=getchar())>='0'&&ch<='9')  res=res*10+(ch-'0');
        return flag?-res:res;
    }
    void Out(int a) {
        if(a<0) {putchar('-'); a=-a;}
        if(a>=10) Out(a/10);
        putchar(a%10+'0');
    }
    const int N=5005;
    //Code begin...
    
    struct Edge{int p, next, w;}edge[120005];
    int head[N], cnt=2, s, t, vis[N];
    queue<int>Q;
    int Low[N], DFN[N], Stack[N], Belong[N], Index, top, scc;
    bool Instack[N], ans[60005][2];
    
    void add_edge(int u, int v, int w){
        edge[cnt].p=v; edge[cnt].w=w; edge[cnt].next=head[u]; head[u]=cnt++;
        edge[cnt].p=u; edge[cnt].w=0; edge[cnt].next=head[v]; head[v]=cnt++;
    }
    int bfs(){
        int i, v;
        mem(vis,-1);
        vis[s]=0; Q.push(s);
        while (!Q.empty()) {
            v=Q.front(); Q.pop();
            for (i=head[v]; i; i=edge[i].next) {
                if (edge[i].w>0 && vis[edge[i].p]==-1) {
                    vis[edge[i].p]=vis[v] + 1;
                    Q.push(edge[i].p);
                }
            }
        }
        return vis[t]!=-1;
    }
    int dfs(int x, int low){
        int i, a, temp=low;
        if (x==t) return low;
        for (i=head[x]; i; i=edge[i].next) {
            if (edge[i].w>0 && vis[edge[i].p]==vis[x]+1){
                a=dfs(edge[i].p,min(edge[i].w,temp));
                temp-=a; edge[i].w-=a; edge[i^1].w += a;
                if (temp==0) break;
            }
        }
        if (temp==low) vis[x]=-1;
        return low-temp;
    }
    void Tarjan(int u){
        int v;
        Low[u]=DFN[u]=++Index; Stack[top++]=u; Instack[u]=true;
        for (int i=head[u]; i; i=edge[i].next) {
            if (edge[i].w==0) continue;
            v=edge[i].p;
            if (!DFN[v]) {
                Tarjan(v);
                if (Low[u]>Low[v]) Low[u]=Low[v];
            }
            else if (Instack[v]&&Low[u]>DFN[v]) Low[u]=DFN[v];
        }
        if (Low[u]==DFN[u]) {
            ++scc;
            do{v=Stack[--top]; Instack[v]=false; Belong[v]=scc;}while (v!=u);
        }
    }
    void solve(int n){
        mem(DFN,0); mem(Instack,0);
        Index=scc=top=0;
        FOR(i,1,n) if (!DFN[i]) Tarjan(i);
    }
    int main ()
    {
        int n, m, u, v, w, tmp, res=0;
        n=Scan(); m=Scan(); s=Scan(); t=Scan();
        FOR(i,1,m) u=Scan(), v=Scan(), w=Scan(), add_edge(u,v,w);
        while (bfs()) while (tmp=dfs(s,INF)) res+=tmp;
        solve(n);
        for (int i=2; i<cnt; i+=2) {
            if (edge[i].w) {puts("0 0"); continue;}
            u=edge[i].p, v=edge[i^1].p;
            if (Belong[u]!=Belong[v]) ans[i/2][0]=1;
            if (Belong[v]==Belong[s]&&Belong[u]==Belong[t]) ans[i/2][1]=1;
            printf("%d %d
    ",ans[i/2][0],ans[i/2][1]);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Java基础面试题总结
    mysql面试题总结
    记7.9面试题
    深入理解Java虚拟机学习笔记(三)-----类文件结构/虚拟机类加载机制
    jvm类加载子系统
    多线程与高并发基础三
    多线程与高并发基础二
    多线程与高并发基础一
    多线程与高并发笔记一
    Unknown initial character set index '255' received from server. Initial client character set can be forced via the 'characterEncoding' property.
  • 原文地址:https://www.cnblogs.com/lishiyao/p/6606583.html
Copyright © 2011-2022 走看看