A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (<) and D (1), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line Yes
if N is a reversible prime with radix D, or No
if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
主要 考察进制转换
#include <iostream> #include <string> using namespace std; bool isPrime(int N){ if(N <= 1) return false; if(N == 2 || N == 3) return true; for(int i = 2; i * i <= N; i++) if(N % i ==0) return false; return true; } int rev(int N, int radix){ string s = ""; while(N != 0){ s += (N % radix); N /= radix; } int p = 1, res = 0; for(int i = s.length()-1; i >= 0; i--){ res += (s[i] * p); p *= radix; } return res; } int main(){ int num, radix; while(true){ cin >> num; if(num < 0) break; else { cin >> radix; int rev_num = rev(num, radix); if(isPrime(num) && isPrime(rev_num)) cout << "Yes" << endl; else cout << "No" << endl; } } system("pause"); return 0; }