主要知识点:
- 学习聚合知识
一、准备数据
1、家电卖场案例背景建立index
以一个家电卖场中的电视销售数据为背景,来对各种品牌,各种颜色的电视的销量和销售额,进行各种各样角度的分析
PUT /tvs
{
"mappings": {
"sales": {
"properties": {
"price": {
"type": "long"
},
"color": {
"type": "keyword"
},
"brand": {
"type": "keyword"
},
"sold_date": {
"type": "date"
}
}
}
}
}
2、插入部分数据
POST /tvs/sales/_bulk
{ "index": {}}
{ "price" : 1000, "color" : "红色", "brand" : "长虹", "sold_date" : "2016-10-28" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2016-11-05" }
{ "index": {}}
{ "price" : 3000, "color" : "绿色", "brand" : "小米", "sold_date" : "2016-05-18" }
{ "index": {}}
{ "price" : 1500, "color" : "蓝色", "brand" : "TCL", "sold_date" : "2016-07-02" }
{ "index": {}}
{ "price" : 1200, "color" : "绿色", "brand" : "TCL", "sold_date" : "2016-08-19" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2016-11-05" }
{ "index": {}}
{ "price" : 8000, "color" : "红色", "brand" : "三星", "sold_date" : "2017-01-01" }
{ "index": {}}
{ "price" : 2500, "color" : "蓝色", "brand" : "小米", "sold_date" : "2017-02-12" }
二、进行聚合分析
统计哪种颜色的电视销量最高
GET /tvs/sales/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : {
"field" : "color"
}
}
}
}
对部分语句的解释:
- size:只获取聚合结果,而不要执行聚合的原始数据,也就是不返回上述插入的数据。
- aggs:固定语法,要对一份数据执行分组聚合操作
- popular_colors:对聚合后的数据取一个别名,这个别名是程序员自定义的。
- terms:根据字段的值进行分组
- field:根据指定的字段的值进行分组(确定分组的是那一个字段)
执行结果如下:
{
"took": 61,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"popular_color": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "红色",
"doc_count": 4
},
{
"key": "绿色",
"doc_count": 2
},
{
"key": "蓝色",
"doc_count": 2
}
]
}
}
}
- hits.hits:因为指定了size是0,所以hits.hits就是空的,否则就会返回聚合的原始数据,zise指定为20,就返回20条数据。
- aggregations:这个字段就是返回的聚合结果
- popular_color:我们聚合后的名称
- buckets:根据我们指定的field划分出的buckets
- key:每个bucket对应的那个值
- doc_count:这个bucket分组内,有多少个数据、本例就是这种颜色的销量
- bucket默认的排序规则:按照doc_count降序排序