zoukankan      html  css  js  c++  java
  • 查看Spark与Hadoop等其他组件的兼容版本

    安装与Spark相关的其他组件的时候,例如JDK,Hadoop,Yarn,Hive,Kafka等,要考虑到这些组件和Spark的版本兼容关系。这个对应关系可以在Spark源代码的pom.xml文件中查看。

    一、 下载Spark源代码

    打开网址https://github.com/apache/spark,例如选择v2.4.0-rc5版本,再点击“Clone or download”按钮,点击下方的“Download ZIP”进行下载。

    二、查看pom.xml文件
    将下载的源代码压缩包解压后,打开里面的pom.xml文件,查看properties标签内各配置项,里面有列出其他组件的兼容版本信息,例如<hadoop.version>2.6.5</hadoop.version>表示hadoop版本为2.6.5。如下:

      <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <java.version>1.8</java.version>
        <maven.compiler.source>${java.version}</maven.compiler.source>
        <maven.compiler.target>${java.version}</maven.compiler.target>
        <maven.version>3.5.4</maven.version>
        <sbt.project.name>spark</sbt.project.name>
        <slf4j.version>1.7.16</slf4j.version>
        <log4j.version>1.2.17</log4j.version>
        <hadoop.version>2.6.5</hadoop.version>
        <protobuf.version>2.5.0</protobuf.version>
        <yarn.version>${hadoop.version}</yarn.version>
        <flume.version>1.6.0</flume.version>
        <zookeeper.version>3.4.6</zookeeper.version>
        <curator.version>2.6.0</curator.version>
        <hive.group>org.spark-project.hive</hive.group>
        <!-- Version used in Maven Hive dependency -->
        <hive.version>1.2.1.spark2</hive.version>
        <!-- Version used for internal directory structure -->
        <hive.version.short>1.2.1</hive.version.short>
        <derby.version>10.12.1.1</derby.version>
        <parquet.version>1.10.0</parquet.version>
        <orc.version>1.5.2</orc.version>
        <orc.classifier>nohive</orc.classifier>
        <hive.parquet.version>1.6.0</hive.parquet.version>
        <jetty.version>9.3.24.v20180605</jetty.version>
        <javaxservlet.version>3.1.0</javaxservlet.version>
        <chill.version>0.9.3</chill.version>
        <ivy.version>2.4.0</ivy.version>
        <oro.version>2.0.8</oro.version>
        <codahale.metrics.version>3.1.5</codahale.metrics.version>
        <avro.version>1.8.2</avro.version>
        <avro.mapred.classifier>hadoop2</avro.mapred.classifier>
        <aws.kinesis.client.version>1.8.10</aws.kinesis.client.version>
        <!-- Should be consistent with Kinesis client dependency -->
        <aws.java.sdk.version>1.11.271</aws.java.sdk.version>
        <!-- the producer is used in tests -->
        <aws.kinesis.producer.version>0.12.8</aws.kinesis.producer.version>
        <!--  org.apache.httpcomponents/httpclient-->
        <commons.httpclient.version>4.5.6</commons.httpclient.version>
        <commons.httpcore.version>4.4.10</commons.httpcore.version>
        <!--  commons-httpclient/commons-httpclient-->
        <httpclient.classic.version>3.1</httpclient.classic.version>
        <commons.math3.version>3.4.1</commons.math3.version>
        <!-- managed up from 3.2.1 for SPARK-11652 -->
        <commons.collections.version>3.2.2</commons.collections.version>
        <scala.version>2.11.12</scala.version>
        <scala.binary.version>2.11</scala.binary.version>
        <codehaus.jackson.version>1.9.13</codehaus.jackson.version>
        <fasterxml.jackson.version>2.6.7</fasterxml.jackson.version>
        <fasterxml.jackson.databind.version>2.6.7.1</fasterxml.jackson.databind.version>
        <snappy.version>1.1.7.1</snappy.version>
        <netlib.java.version>1.1.2</netlib.java.version>
        <calcite.version>1.2.0-incubating</calcite.version>
        <commons-codec.version>1.10</commons-codec.version>
        <commons-io.version>2.4</commons-io.version>
        <!-- org.apache.commons/commons-lang/-->
        <commons-lang2.version>2.6</commons-lang2.version>
        <!-- org.apache.commons/commons-lang3/-->
        <commons-lang3.version>3.5</commons-lang3.version>
        <datanucleus-core.version>3.2.10</datanucleus-core.version>
        <janino.version>3.0.9</janino.version>
        <jersey.version>2.22.2</jersey.version>
        <joda.version>2.9.3</joda.version>
        <jodd.version>3.5.2</jodd.version>
        <jsr305.version>1.3.9</jsr305.version>
        <libthrift.version>0.9.3</libthrift.version>
        <antlr4.version>4.7</antlr4.version>
        <jpam.version>1.1</jpam.version>
        <selenium.version>2.52.0</selenium.version>
        <!--
        Managed up from older version from Avro; sync with jackson-module-paranamer dependency version
        -->
        <paranamer.version>2.8</paranamer.version>
        <maven-antrun.version>1.8</maven-antrun.version>
        <commons-crypto.version>1.0.0</commons-crypto.version>
        <!--
        If you are changing Arrow version specification, please check ./python/pyspark/sql/utils.py,
        ./python/run-tests.py and ./python/setup.py too.
        -->
        <arrow.version>0.10.0</arrow.version>
    
        <test.java.home>${java.home}</test.java.home>
        <test.exclude.tags></test.exclude.tags>
        <test.include.tags></test.include.tags>
    
        <!-- Package to use when relocating shaded classes. -->
        <spark.shade.packageName>org.spark_project</spark.shade.packageName>
    
        <!-- Modules that copy jars to the build directory should do so under this location. -->
        <jars.target.dir>${project.build.directory}/scala-${scala.binary.version}/jars</jars.target.dir>
    
        <!-- Allow modules to enable / disable certain build plugins easily. -->
        <build.testJarPhase>prepare-package</build.testJarPhase>
        <build.copyDependenciesPhase>none</build.copyDependenciesPhase>
    
        <!--
          Dependency scopes that can be overridden by enabling certain profiles. These profiles are
          declared in the projects that build assemblies.
    
          For other projects the scope should remain as "compile", otherwise they are not available
          during compilation if the dependency is transivite (e.g. "graphx/" depending on "core/" and
          needing Hadoop classes in the classpath to compile).
        -->
        <flume.deps.scope>compile</flume.deps.scope>
        <hadoop.deps.scope>compile</hadoop.deps.scope>
        <hive.deps.scope>compile</hive.deps.scope>
        <orc.deps.scope>compile</orc.deps.scope>
        <parquet.deps.scope>compile</parquet.deps.scope>
        <parquet.test.deps.scope>test</parquet.test.deps.scope>
    
        <!--
          Overridable test home. So that you can call individual pom files directly without
          things breaking.
        -->
        <spark.test.home>${session.executionRootDirectory}</spark.test.home>
    
        <CodeCacheSize>512m</CodeCacheSize>
      </properties>

    完毕。

  • 相关阅读:
    aws AWS CloudHSM
    aws Web server log analysis
    Monitor and Respond with AWS Config
    Amazon Cognito
    Amazon GuardDuty
    使用Reflactor反编译.Net程序的经验
    Windows Server 2008 25条常见问题
    解决C#读取EXCEL中数字无法读取的方法
    关于HOOK基础知识(windows API ,C++)
    Windows下Hook API 技术(HOOK SEND)
  • 原文地址:https://www.cnblogs.com/liuys635/p/12371793.html
Copyright © 2011-2022 走看看