zoukankan      html  css  js  c++  java
  • Codeforces Round #232 (Div. 2) D. On Sum of Fractions

    D. On Sum of Fractions

    Let's assume that

    • v(n) is the largest prime number, that does not exceed n;
    • u(n) is the smallest prime number strictly greater than n.

    Find .

    Input

    The first line contains integer t (1 ≤ t ≤ 500) — the number of testscases.

    Each of the following t lines of the input contains integer n (2 ≤ n ≤ 109).

    Output

    Print t lines: the i-th of them must contain the answer to the i-th test as an irreducible fraction "p/q", where p, q are integers, q > 0.

    Sample test(s)
    input
    2
    2
    3
    output
    1/6
    7/30


    typedef long long LL ;
    
    bool  is_prime(LL x){
          for(LL i = 2 ; i * i <= x ; i++)
            if(x % i == 0)
               return 0 ;
          return 1 ;
    }
    
    LL   V(LL x){
          while(! is_prime(x))
             x-- ;
          return x ;
    }
    
    LL   U(LL x){
          x++ ;
          while(! is_prime(x))
              x++ ;
          return x ;
    }
    
    LL   gcd(LL x , LL y){
         return y == 0 ? x : gcd(y , x % y)  ;
    }
    
    class Node{
        public :
           LL zi ;
           LL mu ;
        public :
           Node(){} ;
           Node(LL z , LL m){
               LL g = gcd(z , m) ;
               zi = z/g ;
               mu = m/g ;
           } ;
           Node  operator + (const Node &other){
                  LL  m  , z , g ;
                  g = gcd(mu , other.mu) ;
                  m = mu / g * other.mu ;
                  z = other.mu / g * zi + mu /g * other.zi ;
                  g = gcd(z, m)  ;
                  return Node(z/g , m/g) ;
           }
           Node  operator - (const Node &other){
                  LL  m  , z  , g ;
                  g = gcd(mu , other.mu) ;
                  m = mu / g * other.mu ;
                  z = other.mu /g * zi - mu / g * other.zi ;
                  g = gcd(z, m)  ;
                  return Node(z/g , m/g) ;
           }
    
           Node & operator = (const Node &now){
                  this->mu = now.mu ;
                  this->zi = now.zi ;
                  return *this ;
           }
           friend ostream & operator << (ostream &out , const Node &A){
                  out<<A.zi<<"/"<<A.mu ;
                  return out ;
           }
    };
    
    int main(){
        int t  ;
        LL x ;
        cin>>t ;
        while(t--){
            cin>>x ;
            LL v = V(x) ;
            LL u = U(x) ;
            Node ans = Node(1 , 2) - Node(1 , v) ;
            Node  sum = Node(x-v+1, u*v) + ans ;
            cout<<sum<<endl ;
        }
        return 0;
    }
    

      

  • 相关阅读:
    PHP闭包的用法
    composer相关命令
    keepalievd
    docker-compose
    rabbitmq 知识点
    免费的mysql客户端管理工具
    git生成密钥
    rabbitmq在docker下进行cluster
    http状态码
    vmplayer固定IP
  • 原文地址:https://www.cnblogs.com/liyangtianmen/p/3575534.html
Copyright © 2011-2022 走看看