zoukankan      html  css  js  c++  java
  • hdu 1513(滚动数组)

    Palindrome

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 4751    Accepted Submission(s): 1625


    Problem Description
    A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

    As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.
     
    Input
    Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.
     
    Output
    Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.
     
    Sample Input
    5 Ab3bd
     
    Sample Output
    2
     
    Source
     
    这题用区间DP会爆内存。。正确解法利用LCS解,并且LCS算法算的时候只和当前行和上一行有关,所以利用滚动数组压缩空间
    ///题意:将一个字符串变成回文串需要添加的最少字符数量
    ///解法:将字符串反过来.求出原字符串与现在的字符串的LCS,然后用原串减掉LCS的长度即为最少添加的字符
    ///这个解法的好处就是可以将DP数组变成滚动数组
    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<math.h>
    #include<algorithm>
    using namespace std;
    const int N = 5001;
    int dp[2][N];
    char str[N],str1[N];
    int main()
    {
        int n;
        while(scanf("%d",&n)!=EOF){
            scanf("%s",str+1);
            for(int i=1;i<=n;i++){
                str1[n-i+1]=str[i];
            }
            ///printf("%s",str1+1);
            memset(dp,0,sizeof(dp));
            for(int i=1;i<=n;i++){
                for(int j=1;j<=n;j++){
                    if(str[i]==str1[j]){
                        dp[i%2][j] = dp[(i-1)%2][j-1]+1;
                    }else{
                        dp[i%2][j] = max(dp[i%2][j-1],dp[(i-1)%2][j]);
                    }
                }
            }
            printf("%d
    ",n-max(dp[1][n],dp[0][n]));
        }
    }

    贴个爆内存的代码。。开short都没用,hdu数据强吗 ORZ ~~~

    ///题意:将一个字符串变成回文串需要添加的最少字符数量
    ///解法:区间DP,dp[i][j]代表区间i-j里面要添加多少个字符才能将其变成回文串
    ///如果 str[i] == str[j] 那么 dp[i][j] = dp[i+1][j-1]
    ///否则 dp[i][j] = min(dp[i+1][j] ,dp[i][j-1])+1 即考虑是在第i+1个字符之前添加str[j]还是在
    ///在j-1之后添加字符str[i]
    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    #include<math.h>
    #include<algorithm>
    using namespace std;
    const int N = 5000;
    short dp[N][N];
    char str[N];
    int main()
    {
        int n;
        while(scanf("%d",&n)!=EOF){
            scanf("%s",str);
            for(int i=1;i<=n;i++) dp[i][i]=0;///区间长度为1的时候不需要添加就是回文串
            for(int l = 2;l<=n;l++){
                for(int i=0;i<=n-l+1;i++){
                    int j = i+l-1;
                    if(str[i]==str[j]) {
                        dp[i][j] = dp[i+1][j-1];
                    }else{
                        dp[i][j] = min(dp[i+1][j],dp[i][j-1])+1;
                    }
                }
            }
            printf("%d
    ",dp[0][n-1]);
        }
    }
  • 相关阅读:
    构建之法第十三~十七章阅读
    构建之法第十,十一,十二章阅读
    构建之法第八,九,十章阅读
    Sprint会议计划
    作业6
    作业5 四则运算 测试与封装 5.2
    作业5 四则运算 测试与封装 5.1
    构建之法2
    做汉堡
    构建之法阅读
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5420600.html
Copyright © 2011-2022 走看看