zoukankan      html  css  js  c++  java
  • hdu 1853(拆点判环+费用流)

    Cyclic Tour

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)
    Total Submission(s): 2257    Accepted Submission(s): 1148


    Problem Description
    There are N cities in our country, and M one-way roads connecting them. Now Little Tom wants to make several cyclic tours, which satisfy that, each cycle contain at least two cities, and each city belongs to one cycle exactly. Tom wants the total length of all the tours minimum, but he is too lazy to calculate. Can you help him?
     
    Input
    There are several test cases in the input. You should process to the end of file (EOF).
    The first line of each test case contains two integers N (N ≤ 100) and M, indicating the number of cities and the number of roads. The M lines followed, each of them contains three numbers A, B, and C, indicating that there is a road from city A to city B, whose length is C. (1 ≤ A,B ≤ N, A ≠ B, 1 ≤ C ≤ 1000).
     
    Output
    Output one number for each test case, indicating the minimum length of all the tours. If there are no such tours, output -1.
     
    Sample Input
    6 9 1 2 5 2 3 5 3 1 10 3 4 12 4 1 8 4 6 11 5 4 7 5 6 9 6 5 4 6 5 1 2 1 2 3 1 3 4 1 4 5 1 5 6 1
     
    Sample Output
    42 -1
    Hint
    In the first sample, there are two cycles, (1->2->3->1) and (6->5->4->6) whose length is 20 + 22 = 42.
     
     
    题意:n个城市,m条路线,现在要对这些城市进行规划,每个城市都要被规划进一个环里面,而且只能出现一次,现在问能否做到?如果能够做到,输出最小路径和.
    题解:最小费用最大流+拆点,如果城市在环里面,那么这个点的出度,入度都为1,将一个人拆成 i ,i+n,那么我们就限制了当前的人只能够用一次,然后对i ,j+n 建立关系,跑一遍最小费用最大流即可。如果最大流<n,那么则是无解的.
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <algorithm>
    using namespace std;
    const int INF = 999999999;
    const int N = 405;
    const int M = 80005;
    struct Edge{
        int u,v,cap,cost,next;
    }edge[M];
    int head[N],tot,low[N],pre[N];
    int total ;
    bool vis[N];
    void addEdge(int u,int v,int cap,int cost,int &k){
        edge[k].u=u,edge[k].v=v,edge[k].cap = cap,edge[k].cost = cost,edge[k].next = head[u],head[u] = k++;
        edge[k].u=v,edge[k].v=u,edge[k].cap = 0,edge[k].cost = -cost,edge[k].next = head[v],head[v] = k++;
    }
    void init(){
        memset(head,-1,sizeof(head));
        tot = 0;
    }
    bool spfa(int s,int t,int n){
        memset(vis,false,sizeof(vis));
        for(int i=0;i<=n;i++){
            low[i] = (i==s)?0:INF;
            pre[i] = -1;
        }
        queue<int> q;
        q.push(s);
        while(!q.empty()){
            int u = q.front();
            q.pop();
            vis[u] = false;
            for(int k=head[u];k!=-1;k=edge[k].next){
                int v = edge[k].v;
                if(edge[k].cap>0&&low[v]>low[u]+edge[k].cost){
                    low[v] = low[u] + edge[k].cost;
                    pre[v] = k; ///v为终点对应的边
                    if(!vis[v]){
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        if(pre[t]==-1) return false;
        return true;
    }
    int MCMF(int s,int t,int n){
        int mincost = 0,minflow,flow=0;
         while(spfa(s,t,n))
        {
            minflow=INF+1;
            for(int i=pre[t];i!=-1;i=pre[edge[i].u])
                minflow=min(minflow,edge[i].cap);
            flow+=minflow;
            for(int i=pre[t];i!=-1;i=pre[edge[i].u])
            {
                edge[i].cap-=minflow;
                edge[i^1].cap+=minflow;
            }
            mincost+=low[t]*minflow;
        }
        total=flow;
        return mincost;
    }
    int n,m;
    int main(){
         while(scanf("%d%d",&n,&m)!=EOF){
            init();
            int src = 0,des = 2*n+1;
            for(int i=1;i<=n;i++){
                addEdge(src,i,1,0,tot);
                addEdge(i+n,des,1,0,tot);
            }
            for(int i=1;i<=m;i++){
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                addEdge(u,v+n,1,w,tot);
            }
            int mincost = MCMF(src,des,2*n+2);
            if(total!=n) printf("-1
    ");
            else printf("%d
    ",mincost);
         }
    }
  • 相关阅读:
    vba中数据类型
    Excel统计函数COUNTIF()的常规用法介绍
    分类求和
    在每个sheet的相同位置写入相同的值
    Timer函数
    数组总结
    如何制作本地yum源
    HDFS的优缺点
    HDFS安全模式
    HDFS的HA(高可用)
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5728578.html
Copyright © 2011-2022 走看看