zoukankan      html  css  js  c++  java
  • 线段树初步

    线段树模板1:https://www.luogu.org/problem/show?pid=3372

    线段树模板2:https://www.luogu.org/problem/show?pid=3373

    这些都比较基础,就是1或2个lazy标记的时候怎么处理?几乎不用考虑兼容性的问题。

    现在这里有一道充分考验线段树lazy的兼容性问题的题目,涉及到4个lazy标记,怎么处理?

    例子1:求线段树维护一个区间,支持如下操作:区间修改为同一个值(更改1),区间加一个数(更改2),区间和(运算1),区间最大值(运算2):

    解析:首先,不考虑lazy标记的兼容性是不行的,需要注意的是区间修改和区间和,区间最大值是不兼容的,所以在lazy时需要特判!!

    还有需要注意的点非常多,需要注意,

    //本程序经过oycy0306测试正确性保障++
    uses math;
    const maxn=1000; inf=233333333; type rec=record add,mk:longint; end; var n,m,i,opx,opr,opl,ch,ans:longint; f,ff,a:array[1..maxn]of longint; s:array[1..maxn]of rec; procedure build(x,l,r:longint); var m:longint; begin s[x].mk:=inf; s[x].add:=0; if l=r then begin ff[x]:=a[l]; f[x]:=a[l]; exit; end; m:=(l+r)>>1; build(2*x,l,m); build(2*x+1,m+1,r); f[x]:=f[2*x]+f[2*x+1]; ff[x]:=max(ff[2*x],ff[2*x+1]); end; procedure down(x,l,r,m,lson,rson:longint); begin if s[x].mk<>inf then begin //** s[lson].mk:=s[x].mk; s[rson].mk:=s[x].mk; s[lson].add:=0; s[rson].add:=0; f[lson]:=opx*(m-l+1); f[rson]:=opx*(r-m); ff[lson]:=opx; ff[rson]:=opx; s[x].mk:=inf; s[x].add:=0; exit; end; s[lson].mk:=inf; s[rson].mk:=inf; s[lson].add:=s[lson].add+s[x].add; s[rson].add:=s[rson].add+s[x].add; f[lson]:=f[lson]+s[x].add*(m-l+1); f[rson]:=f[rson]+s[x].add*(r-m); ff[lson]:=ff[lson]+s[x].add; ff[rson]:=ff[lson]+s[x].add; s[x].add:=0; s[x].mk:=inf; //** end; procedure calc(x,l,r:longint); var m:longint; begin if (opl<=l)and(opr>=r) then begin case ch of 1:begin s[x].mk:=opx; s[x].add:=0; f[x]:=opx*(r-l+1); ff[x]:=opx; end; 2:begin s[x].add:=s[x].add+opx; f[x]:=f[x]+opx*(r-l+1); ff[x]:=ff[x]+opx; end; 3:begin ans:=ans+f[x]; end; //f:sum 4:begin ans:=max(ff[x],ans)end; //ff:mk end; exit; end; m:=(l+r)>>1; if (s[x].mk<>inf)or(s[x].add>0)then down(x,l,r,m,2*x,2*x+1); if opl<=m then calc(2*x,l,m); if opr>m then calc(2*x+1,m+1,r); if (ch=1)or(ch=2) then begin f[x]:=f[2*x]+f[2*x+1]; ff[x]:=max(ff[2*x],ff[2*x+1]) end; end; begin writeln('input nodenum n=??'); readln(n); writeln('input a num(n) sequence called a[]==??'); for i:=1 to n do read(a[i]); write('the strat sequence a[]=='); for i:=1 to n do write(a[i],' ');writeln; writeln('---------------------------'); writeln('start to build XD tree.'); writeln('---------------------------'); build(1,1,n); writeln('---------------------------'); writeln('XD tree is already built.'); writeln('---------------------------'); writeln('input your instructions number!'); //build ok! readln(m); writeln('OK.'); writeln('---------------------------'); writeln('1=modify'); writeln('2=ADD'); writeln('3=question sum'); writeln('4=max in the a[]'); writeln('a line a word.'); writeln('instruction+ +minl+ +maxr+ (+valuable)'); writeln('---------------------------'); for i:=1 to m do begin writeln('instruction input ',i,' :'); read(ch,opl,opr); if (ch=3)or(ch=4) then readln else readln(opx); case ch of 1,2:begin writeln('instruction output ',i,':'); writeln('Nothing except the instruction is running over.');calc(1,1,n); end; 3,4:begin ans:=0; calc(1,1,n); writeln('instruction output ',i,' :'); writeln(ans); end; end; end; end.

     例子2:求线段树维护一个区间,支持如下操作:区间修改为同一个值(更改1),区间加一个数(更改2),区间乘一个数(更该3),区间和(运算1),区间最大值(运算2):、

    对于例子1又多了一个区间乘法,所以就有5个lazy标记了...

    所以这个down函数比较的长; 具体不解释了,就是在例子1上增加,看代码:

    uses math;
    const maxn=1000;
          inf=233333333;
    type rec=record
    add,mk,mp:longint;
    end;
    var  n,m,i,opx,opr,opl,ch,ans:longint;
         f,ff,a:array[1..maxn]of longint;
         s:array[1..maxn]of rec;
    procedure build(x,l,r:longint);
    var m:longint;
    begin
     s[x].mk:=inf;
     s[x].add:=0;
     s[x].mp:=1;
     if l=r then begin
      ff[x]:=a[l];
      f[x]:=a[l];
    //  s[x].mx:=a[l];
      exit;
     end;
     m:=(l+r)>>1;
     build(2*x,l,m);
     build(2*x+1,m+1,r);
     f[x]:=f[2*x]+f[2*x+1];
     ff[x]:=max(ff[2*x],ff[2*x+1]);
    end;
    procedure down(x,l,r,m,lson,rson:longint);
    begin
     if s[x].mk<>inf then begin  //**
      s[lson].mk:=s[x].mk;
      s[rson].mk:=s[x].mk;
      s[lson].add:=0;
      s[rson].add:=0;
      s[lson].mp:=1;
      s[rson].mp:=1;
      f[lson]:=opx*(m-l+1);
      f[rson]:=opx*(r-m);
      ff[lson]:=opx;
      ff[rson]:=opx;
      s[x].mk:=inf;
      s[x].add:=0;
      s[x].mp:=1;
      exit;
     end;
      s[lson].mp:=s[lson].mp*s[x].mp;
      s[rson].mp:=s[rson].mp*s[x].mp;
      s[lson].add:=s[lson].add*s[x].mp;
      s[rson].add:=s[rson].add*s[x].mp;
      f[lson]:=f[lson]*s[x].mp;
      f[rson]:=f[rson]*s[x].mp;
      ff[lson]:=ff[lson]*s[x].mp;
      ff[rson]:=ff[lson]*s[x].mp;
      s[x].mp:=1;
      s[lson].mk:=inf;
      s[rson].mk:=inf;
      s[lson].add:=s[lson].add+s[x].add;
      s[rson].add:=s[rson].add+s[x].add;
      f[lson]:=f[lson]+s[x].add*(m-l+1);
      f[rson]:=f[rson]+s[x].add*(r-m);
      ff[lson]:=ff[lson]+s[x].add;
      ff[rson]:=ff[lson]+s[x].add;
      s[x].add:=0;
      s[x].mk:=inf;             //**
    end;
    procedure calc(x,l,r:longint);
    var m:longint;
    begin
     if  (opl<=l)and(opr>=r) then begin
      case ch of
       1:begin s[x].mk:=opx; s[x].add:=0; f[x]:=opx*(r-l+1); ff[x]:=opx; end;
       2:begin s[x].add:=s[x].add+opx; f[x]:=f[x]+opx*(r-l+1); ff[x]:=ff[x]+opx; end;
       3:begin ans:=ans+f[x]; end;  //f:sum
       4:begin ans:=max(ff[x],ans)end;  //ff:mk
       5:begin s[x].mp:=s[x].mp*opx; s[x].add:=s[x].add*opx; f[x]:=f[x]*opx; ff[x]:=ff[x]*opx; end;
      end;
      exit;
      end;
      m:=(l+r)>>1;
      if (s[x].mk<>inf)or(s[x].add>0)or(s[x].mp<>1)then down(x,l,r,m,2*x,2*x+1);
      if opl<=m then calc(2*x,l,m);
      if opr>m then calc(2*x+1,m+1,r);
      if (ch=1)or(ch=2) then begin
       f[x]:=f[2*x]+f[2*x+1];
       ff[x]:=max(ff[2*x],ff[2*x+1])
      end;
    end;
    begin
     writeln('input nodenum n=??'); readln(n);
     writeln('input a num(n) sequence called a[]==??');
     for i:=1 to n do read(a[i]);
     write('the strat sequence a[]==');
     for i:=1 to n do write(a[i],' ');writeln;
     writeln('---------------------------');
     writeln('start to build XD tree.');
     writeln('---------------------------');
     build(1,1,n);
     writeln('---------------------------');
     writeln('XD tree is already built.');
     writeln('---------------------------');
     writeln('input your instructions number!'); //build ok!
     readln(m); writeln('OK.');
     writeln('---------------------------');
     writeln('1=modify');
     writeln('2=ADD');
     writeln('3=question sum');
     writeln('4=max in the a[]');
     writeln('5=multiplication');
     writeln('a line a word.');
     writeln('instruction+ +minl+ +maxr+ (+valuable)');
     writeln('---------------------------');
     for i:=1 to m do begin
      writeln('instruction input ',i,' :');
      read(ch,opl,opr);
      if (ch=3)or(ch=4) then readln else readln(opx);
      case ch of
       1,2,5:begin calc(1,1,n); writeln('instruction output ',i,':'); writeln('Nothing except the instruction is running over.'); end;
       3,4:begin ans:=0; calc(1,1,n); writeln('instruction output ',i,' :'); writeln(ans); end;
      end;
     end;
    end.

     例子3:区间加等比数列,区间和

    我们用4个参数来描述加上的一个等比数列:opl,opr,opx,opk表示该等比数列是从opl到opr的,opl作为第一项,值为opx,比例系数为opk;

    本题主要用到前缀和的原理,详见树状数组的简单运用。

    还是比较基础的题,就不过多解释了~~

    const maxn=1000001;
    var n,m,i,opx,opl,opr,opty,opk:longint;
        f,s:array[0..3*maxn]of int64;
        a:array[0..1*maxn]of int64;
        ch:integer;
        ans:int64;
    function pow(x,n:longint):longint;
    begin
     if n=0 then exit(1);
     pow:=pow(x,n div 2);
     pow:=pow*pow;
     if n mod 2=1 then pow:=pow*x;
    end;
    function ff(a1,q,n:longint):longint;
    begin
     ff:=a1*trunc((1-pow(q,n))/(1-q))
    end;
    procedure build(x,l,r:longint);
    var m:longint;
    begin
     if l=r then begin
      f[x]:=a[l];
      exit;
     end;
     m:=(l+r)>>1;
     build(2*x,l,m);
     build(2*x+1,m+1,r);
     f[x]:=f[2*x]+f[2*x+1];
    end;
    procedure down(x,l,r,m,lson,rson:longint);
    begin
     s[lson]:=s[lson]+s[x];
     s[rson]:=s[rson]+s[x];
     f[lson]:=f[lson]+ff(s[x],opk,m)-ff(s[x],opk,l-1);
     f[rson]:=f[rson]+ff(s[x],opk,r)-ff(s[x],opk,m);
     s[x]:=0;
    end;
    procedure calc(x,l,r:longint);
    var m:longint;
    begin
     if (opl<=l)and(opr>=r) then begin
      case ch of
       1:begin s[x]:=s[x]+opx; f[x]:=f[x]+ff(opx,opk,r-opl+1)-ff(opx,opk,l-opl);  end;
       2:ans:=ans+f[x];
      end;
       exit;
     end;
      m:=(l+r)>>1;
      down(x,l,r,m,2*x,2*x+1);
      if opl<=m then calc(2*x,l,m);
      if opr>m then calc(2*x+1,m+1,r);
      if ch=1 then f[x]:=f[2*x]+f[2*x+1];
      writeln('f[',x,']=',f[x]) ;
    end;
    begin
     readln(n);
     for i:=1 to n do read(a[i]);
     build(1,1,n);
     writeln('1=add');
     writeln('2=query');
     readln(m);
     for i:=1 to m do begin
      read(ch,opl,opr);
      case ch of
       1:begin readln(opx,opk);calc(1,1,n); end;
       2:begin readln; ans:=0; calc(1,1,n); writeln(ans); end;
      end;
     end;
    end.
  • 相关阅读:
    iOS项目之wifi局域网传输文件到iPhone的简单实现
    iOS项目之苹果审核被拒
    iOS项目之模拟请求数据
    nvm-window常用命令
    初探浏览器渲染原理
    node + mongodb 简单实现自己的查询接口
    快速理解_.debounce方法
    tr标签使用hover的box-shadow效果不生效
    一个简单的Node命令行程序:文件浏览
    打造丝般顺滑的 H5 翻页库(传送门)
  • 原文地址:https://www.cnblogs.com/ljc20020730/p/7213814.html
Copyright © 2011-2022 走看看