zoukankan      html  css  js  c++  java
  • 二叉树的线索化

    二叉树的线索化

    概念

    二叉树的遍历是将二叉树中结点按一定规律线性化的过程。当以二叉链表作为存储结构时,仅仅能找到左右孩子信息,而不能直接得到结点在遍历序列中的前驱和后继信息。要得到这些信息有两个办法:1.将二叉树遍历一遍。在遍历过程中可得到前序和后继,2.充分利用二叉树中的空链表域。将遍历的过程中的结点的前驱和后继保存下来,实验证明另外一种方法更优。以下介绍第2种方法。

    数据结构

    在有n个结点的二叉树中。共同拥有2n个链表域。但仅仅有n-1个实用的非空链表域,其余n+1个都是空的,我们能够利用这n+1个链表域来存放遍历过程訪问的结点的前驱和后继。其结构例如以下图:
    这里写图片描写叙述
    当中:
    ltag = 0表示lchild指向结点的左孩子。ltag = 1表示lchild指向前驱;
    rtag = 0表示rchild指向结点的右孩子。rtag = 1表示rchild指向后继;
    在这样的存储结构中,指向前驱和后继结点的指针叫做线索,以这样的结构组成的二叉树为线索二叉树。

    中序线索化

    问题来了!!!为什么我们要选择中序线索化呢?例如以下图所看到的是一个二叉树的先序、中序、后序线索化过程。
    二叉树的前序遍历顺序为:ABDG CEHF。假设用下划线来代表空链表域的话,则是:AB D _G C _ E _ H _ F
    中序遍历顺序为:DGBAEHCF,假设用下划线来代表空链表域的话,则是:
    D G _ B _ A _ E _ H _ C _ F _
    后序遍历的顺序为:GDBAHEFC。假设用下划线来代表空链表域的话。则是:_ G _ D B A _ H _ _ E _ F _ C.
    从先序、中序、后序线索化的过程中。能够大致看出,中序遍历的空链表域分布更均匀。在指向前驱和后继过程中更好,可是这也不是否能定前序的线索化和后序的线索化,还是依照二叉树的结构和特点以及使用场景来进行选择,在这里就仅仅说明中序线索化。


    这里写图片描写叙述

    二叉树的线索化操作

    二叉树的线索化操作(中序线索化):
    status InitBTree(BTree * BT)初始化建立二叉树;
    void OnThread(BTree BT)二叉树线索化。
    BTree FindPre(BTree BT)查找线索化结点的前驱;
    BTree FindLast(BTree BT)查找线索化结点的后继;
    BTree FindNode(BTree BT,char ch)查找指定结点位置;
    status InsNode(BTree BT,char par,int pos, char value)线索化二叉树的插入一个结点;
    BTree DelNode(BTree BT,char ch);线索化二叉树删除一个结点。
    (——————————-C语言实现———————————–)

    #include "stdio.h"
    #include "stdlib.h"
    #include "string.h"
    
    #define ERROR 0
    #define TRUE 1
    
    typedef  int status;
    
    typedef struct BTNode{
        char data;
        int ltag,rtag;  //标识
        struct BTNode *lchild,*rchild;
    }BTNode, *BTree;
    
    struct BTNode *pre = NULL;  //先前结点
    
    /*初始化二叉树,建立二叉树*/
    status InitBTree(BTree * BT){
        //前序建立二叉树
        char temp;
        scanf("%c",&temp);
        if(temp == '.')(*BT) = NULL;
        else{
            (*BT) = (BTree)malloc(sizeof(BTNode));
            (*BT)->data = temp;
            (*BT)->lchild = NULL;(*BT)->rchild = NULL;
            (*BT)->ltag = 0;(*BT)->rtag = 0;
    
            InitBTree(&(*BT)->lchild);
            InitBTree(&(*BT)->rchild);
        }
        return TRUE;
    }
    
    //二叉树线索化
    void OnThread(BTree BT){
        //因为二叉树的中序遍历过程中,左右孩子为空的位置分布较为均匀。所以二叉树线索化是二叉树的中序的悬索化
        //二叉树的 线索化是将树形结构转化为线性结构
        if(BT!=NULL){
            OnThread(BT->lchild);
                if(pre!= NULL && pre->rchild ==NULL){
                    pre->rtag = 1;
                    pre->rchild = BT;
                }
                if(BT->lchild == NULL){
                    if(pre !=NULL){
                        BT->ltag = 1;
                        BT->lchild = pre;
                    }
                }
    
            pre = BT;
            OnThread(BT->rchild);
        }
    }
    
    void PrintTree(BTree BT, int nLayer){ //打印二叉树竖型结构
        int i = 0;
        if(BT == NULL)return;
        PrintTree(BT->rchild,nLayer +1);
        for(i = 0; i<nLayer;i++){
            printf("  ");
        }
        printf("%c
    ",BT->data);
        PrintTree(BT->lchild,nLayer +1);
    }
    
    BTree FindPre(BTree BT){  //查找结点的前驱
        BTree p = NULL;
        if(BT!=NULL){
            if(BT->lchild ==NULL)return NULL;  //前驱结点为空
            else if(BT->lchild!=NULL && BT->ltag ==1)return BT->lchild;
            else if(BT->lchild != NULL && BT->ltag == 0){
                p = BT;
                while(p->rchild !=NULL && p->rtag !=1)p = p->rchild;
                return p;
            }
        }
        return NULL;
    }
    
    BTree FindLast(BTree BT){ //查找结点后继
        BTree p = NULL;
        if(BT!=NULL){
            if(BT->rchild ==NULL)return NULL;
            else if(BT->rchild !=NULL && BT->rtag ==1)return BT->rchild;
            else if(BT->rchild !=NULL && BT->rtag == 0){
                p = BT->rchild;
                while(p->lchild != NULL && p->ltag ==0)p = p->lchild;
                return p;
            }
        }
        return NULL;
    }
    
    BTree FindNode(BTree BT,char ch){  //查找当前节点
            BTree p = NULL;
        if(BT!=NULL){
            if(BT->lchild != NULL){
                p = BT->lchild;
                while(p->lchild !=NULL)p = p->lchild;  //找到线头
            }else if(BT->lchild ==NULL){  //仅仅有右子树
                p = BT;
            }
                while(p!=NULL){
                    if(p->data == ch)return p;
                    p = FindLast(p);
            }
        }
        return NULL;
    }
    
    BTree FindParent(BTree BT,BTree p1){  //查找当前节点
            BTree p = NULL;
        if(BT!=NULL){
            if(BT->lchild != NULL){
                p = BT->lchild;
                while(p->lchild !=NULL)p = p->lchild;  //找到线头
            }else if(BT->lchild ==NULL){  //仅仅有右子树
                p = BT;
            }
                while(p!=NULL){
                    if((p->lchild == p1 && p->ltag ==0) || (p->rchild == p1 && p->rtag ==0))return p;
                    p = FindLast(p);
            }
        }
        return NULL;
    }
    
    status InsNode(BTree BT,char par,int pos, char value){  //par父节点data,pos代表插入的左边还是右边0代表左边,1代表右边
        BTree s = NULL,last = NULL,pre1 = NULL;
        BTree parent = FindNode(BT,par);
        if(parent == NULL){
            printf("插入位置不存在...");
            return ERROR;
        }
    
        if(pos == 1){  //插入右子树
            s = (BTree)malloc(sizeof(BTNode));
    
            if(parent->rtag == 1){  //假设右子树为空
                s->data = value;
                s->ltag = 1;s->lchild = parent;
                s->rtag = parent->rtag;
                s->rchild = parent->rchild;
                parent->rtag = 0;
                parent->rchild = s;
            }else if(parent->rtag ==0){  //右子树不为空
                if(parent->rchild == NULL){
                    s->data = value;
                    parent->rchild = s;
                    s->rtag = 0;s->rchild = NULL;
                    s->ltag = 1;s->lchild = parent;
                    return TRUE;
                }
                last = FindLast(parent);  //查找到父节点直接后继
                printf("后继结点:%c
    ",last->data);
                if(last!=NULL){
                    s->data = value;
                    s->rtag = 0; s->rchild = parent->rchild;
                    parent->rchild = s;
                    s->ltag = 1;s->lchild = parent;
                    last->lchild = s;
                }
            }
        }else if(pos == 0){  //插入左子树
            s = (BTree)malloc(sizeof(BTNode));
            if(parent->ltag ==1){  //假设左子树为空
                s->data = value;
                s->ltag = parent->ltag;s->lchild = parent->lchild;
                parent->ltag = 0;
                s->rtag = 1; s->rchild = parent;
            }else if(parent->ltag ==0){
                if(parent->lchild == NULL){
                    s->data = value;
                    parent->lchild = s;
                    s->ltag = 0;s->lchild = NULL;
                    s->rtag = 1;s->rchild = parent;
                    return TRUE;
                }
                pre1 = FindPre(parent);
                s->data = value;
                s->ltag = parent->ltag;
                s->lchild = parent->lchild;
                parent->lchild = s;
    
                s->rtag = 1;
                s->rchild = parent;
                pre1->rchild = s;
            }
        }
        return TRUE;
    }
    
    
    BTree DelNode(BTree BT,char ch){  //删除结点
        BTree parent = NULL,p = NULL,temp = NULL,temp1 = NULL;
        p = FindNode(BT,ch);
        if(p == NULL){
            printf("二叉树无此结点
    ");
            return ERROR;
        }
        parent = FindParent(BT,p);
        if(parent == NULL){ //删除根结点,顶点
            temp = FindPre(p);  //找到根节点的先驱
            temp->rtag = 0;temp->rchild = p->rchild;
            if(p->rchild->ltag == 1)p->lchild = temp;
    
            temp1 = BT->lchild;
            free(BT);
            return temp1;
        }else if(p->ltag == 1 && p->rtag == 1){
            if(parent->lchild == p){
                parent->ltag = p->ltag;
                parent->lchild = p->lchild;
            }else if(parent->rchild == p){
                parent->rtag = p->rtag;
                parent->rchild = p->rchild;
            }
            return BT;
        }else if(p->ltag  == 0 && p->rtag ==0){  //有左右子树
            if(parent->rchild == p){
                temp = FindPre(p);
                parent->rchild = p->lchild;
                temp->rtag = 0;temp->rchild = p->rchild;
                free(p);
            }else if(parent->lchild == p){
                temp = FindLast(p);
                parent->lchild = p->rchild;
                temp->ltag = 0;temp->lchild = p->lchild;
                free(p);
            }
        }
        return BT;
    
    }
    void OnOrder(BTree BT){ //遍历
    
        BTree p = NULL;
        printf("线索化的遍历:
    ");
        if(BT!=NULL){
            if(BT->lchild != NULL){
                p = BT;
                while(p->lchild !=NULL && p->ltag ==0)p = p->lchild;  //找到线头
            }else if(BT->lchild ==NULL){  //仅仅有右子树
                p = BT;
            }
                while(p!=NULL){
                    printf("%c",p->data);
                    p = FindLast(p);
            }
        }
        printf("
    ");
    }
    
    /*主函数*/
    void main(){
        BTree BT = NULL;  //初始化
        BTree temp1 = NULL;
        char input;
        printf("请输入前序二叉树,空结点以.表示:
    ");
        InitBTree(&BT);  //建立二叉树
        getchar();
    
        printf("打印二叉树的树形结构:
    ");
        PrintTree(BT,1);  //
    
        OnThread(BT); //线索化二叉树
        OnOrder(BT);  //依据线索遍历
    
        //查找某一节点
        printf("请输入要查找的字符:");
        scanf("%c",&input);
        getchar();
        temp1 = FindNode(BT,input);
        if(temp1 ==NULL)printf("查找失败...
    ");
        else printf("查找到%c
    ",temp1->data);
    
        InsNode(BT,'B',0,'K');
        printf("插入后遍历:
    ");
        OnOrder(BT);  //依据线索遍历
    }
    
  • 相关阅读:
    关于python的装饰器(初解)
    关于python的创立模块和导入
    2019年春季学期第五周作业
    2019年春季学期第四周作业
    2019年春季学期第三周作业
    pytest
    Python中if __name__ == '__main__':的作用和原理
    oracle中的游标
    oracle中的一些小知识点
    python中str()与repr()函数的区别
  • 原文地址:https://www.cnblogs.com/llguanli/p/8323769.html
Copyright © 2011-2022 走看看