zoukankan      html  css  js  c++  java
  • 【CODEFORCES】 C. Dreamoon and Strings

    C. Dreamoon and Strings
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Dreamoon has a string s and a pattern string p. He first removes exactly x characters from s obtaining string s' as a result. Then he calculates  that is defined as the maximal number of non-overlapping substrings equal to p that can be found in s'. He wants to make this number as big as possible.

    More formally, let's define  as maximum value of  over all s' that can be obtained by removing exactly x characters from s. Dreamoon wants to know  for all x from 0 to |s| where |s| denotes the length of string s.

    Input

    The first line of the input contains the string s (1 ≤ |s| ≤ 2 000).

    The second line of the input contains the string p (1 ≤ |p| ≤ 500).

    Both strings will only consist of lower case English letters.

    Output

    Print |s| + 1 space-separated integers in a single line representing the  for all x from 0 to |s|.

    Sample test(s)
    input
    aaaaa
    aa
    
    output
    2 2 1 1 0 0
    
    input
    axbaxxb
    ab
    
    output
    0 1 1 2 1 1 0 0
    
    Note

    For the first sample, the corresponding optimal values of s' after removal 0 through |s| = 5 characters from s are {"aaaaa""aaaa","aaa""aa""a"""}.

    For the second sample, possible corresponding optimal values of s' are {"axbaxxb""abaxxb""axbab""abab""aba""ab",

    题解:这一题是DP。用D[i][j]表示从1至i。已经取走j个字符时的最大匹配串数。那么,第i位就有2种决策。取还是不取。而不取又分两种情况,一种是与前面的字符串没有能匹配的,一种是和前面的字符串有能匹配的。所以我们能够将状态转移方程表演示样例如以下:

    D[i][j]=max(D[i-1][k-1],D[i-1][k])    //取还是不取

    D[i][j]=max(D[i][j],D[k][j-(i-k-l2)])   //假设与前面有能匹配的情况

    分析清楚了以后。能够发现这个问题跟最长不下降子序列事实上非常像。接下来就是编程实现了。要注意边界。D[i][j]的j不能大于i。并且不能为负数。

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    
    using namespace std;
    
    char s1[2005],s2[2005];
    int l1,l2,j,d[2005][2005],f;
    
    int mac(int i)
    {
        int x=i,y=l2;
        while (x && y)
        {
            if (!y) break;
            if (s1[x-1]==s2[y-1]) {x--; y--;}
            else x--;
        }
        if (!y)
        {
            j=x;
            return 1;
        }
        else
        {
            j=0;
            return 0;
        }
    }
    
    int main()
    {
        scanf("%s",s1);
        scanf("%s",s2);
        l1=strlen(s1);
        l2=strlen(s2);
        for (int i=1;i<=l1;i++)
        {
            f=mac(i);
            for (int k=0;k<=i;k++)
            {
                d[i][k]=max(d[i-1][k],d[i-1][k-1]);
                if (f && j>=k-i+j+l2 && k-i+j+l2>=0) d[i][k]=max(d[i][k],d[j][k-(i-j-l2)]+1);
            }
        }
        for (int i=0;i<=l1;i++)
            printf("%d ",d[l1][i]);
        return 0;
    }
    


  • 相关阅读:
    RHEL6.5安装QT5.4,设置环境变量
    Oprofile安装与使用探索
    龙芯3A上V8的编译与测试
    C#穿透session隔离———Windows服务启动UI交互程序 be
    C#获取CPU与网卡硬盘序列号及Base64和DES加密解密操作类 be
    C#读取Excel转换为DataTable be
    WPF DataGrid ScrollBar Style be
    C#操作注册表 be
    C#读取Excel转为DataTable be
    C# DataTable与Excel读取与导出 be
  • 原文地址:https://www.cnblogs.com/llguanli/p/8514605.html
Copyright © 2011-2022 走看看