zoukankan      html  css  js  c++  java
  • poj2288(哈密尔顿路+状压dp)

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    
    using namespace std;
    
    int n,m;
    int val[15],map[13][13];
    int dp[1<<13][13][13];  //dp[state][i][j]表示state状态下倒数第二个岛为i,最后一个岛为j时的最优解
    long long num[1<<13][13][13];   //num[state][i][j]为相应的路径数目
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        int t;
        scanf("%d",&t);
        while(t--){
            scanf("%d%d",&n,&m);
            for(int i=0;i<n;i++)
                scanf("%d",&val[i]);
            memset(map,0,sizeof(map));
            int u,v;
            while(m--){
                scanf("%d%d",&u,&v);
                u--;v--;
                map[u][v]=map[v][u]=1;
            }
            if(n==1){
                printf("%d 1
    ",val[0]);
                continue;
            }
            memset(dp,-1,sizeof(dp));
            memset(num,0,sizeof(num));
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                    if(i!=j && map[i][j]){
                        dp[(1<<i)|(1<<j)][i][j]=val[i]+val[j]+val[i]*val[j];
                        num[(1<<i)|(1<<j)][i][j]=1;
                    }
            for(int i=0;i<(1<<n);i++)
                for(int j=0;j<n;j++)
                    if((i&(1<<j))!=0)
                        for(int k=0;k<n;k++)
                            if(map[j][k] && j!=k && (i&(1<<k))!=0 && dp[i][j][k]!=-1)   //这里得注意,先彻底明白该dp[][][]的具体含义,
                                for(int x=0;x<n;x++)
                                    if(map[k][x] && j!=x && k!=x && (i&(1<<x))==0){
                                        int tmp=dp[i][j][k]+val[x]+val[k]*val[x];
                                        if(map[j][x])
                                            tmp+=val[j]*val[k]*val[x];
                                        if(dp[i|(1<<x)][k][x]<tmp){
                                            dp[i|(1<<x)][k][x]=tmp;
                                            num[i|(1<<x)][k][x]=num[i][j][k];
                                        }else if(dp[i|(1<<x)][k][x]==tmp)
                                            num[i|(1<<x)][k][x]+=num[i][j][k];
                                    }
            int ans1=0;
            long long ans2=0;
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                    if(i!=j && map[i][j]){
                        if(ans1<dp[(1<<n)-1][i][j]){
                            ans1=dp[(1<<n)-1][i][j];
                            ans2=num[(1<<n)-1][i][j];
                        }else if(ans1==dp[(1<<n)-1][i][j])
                            ans2+=num[(1<<n)-1][i][j];
                    }
            cout<<ans1<<" "<<ans2/2<<endl;
        }
        return 0;
    }
    这是一道典型的利用状态压缩DP求最优Hamilton回路的题目。
    取dp[state][i][j]表示state状态下倒数第二个岛为i,最后一个岛为j时的最优解,num[state][i][j]为相应的路径数目,其中state的二进制表示的i位为1表示岛i被访问过,反之为0。
    则显然当有边(i,j)存在时,有如下初值可赋:
    dp[(1<<i)+(1<<j)][i][j]=val[i]+val[j]+val[i]*val[j],num[(1<<i)+(1<<j)][i][j]=1。
    如果状态(state,i,j)可达,检查岛k,如果此时k没有被访问过并且有边(j,k)存在,则做如下操作:
    1)设tmp为下一步访问岛k时获得的总利益,r=state+(1<<k)。
    2)如果t,p>dps[r][j][k],表示此时可以更新到更优解,则更新:
        dp[r][j][k]=q,num[r][j][k]=num[state][i][j]。
    3)如果tmp==dp[r][j][k],表示此时可以获得达到局部最优解的更多方式,则更新:
        num[r][j][k]+=num[p][i][j]。
    最后检查所有的状态((1<<n)-1,i,j),叠加可以得到最优解的道路数。
    需要注意的是,题目约定一条路径的两种行走方式算作一种,所以最终结果要除2。
     
     
  • 相关阅读:
    软件工程团队作业--详细设计说明书
    软件工程团队作业-详细设计阶段
    软件工程-架构设计成果物
    软件工程-架构设计阶段
    软件工程-需求分析成果物
    软件工程团队作业-需求分析阶段
    软件工程-编写调研提纲
    软件工程第四次作业
    软件工程第三次作业
    20199103 2019-2020-2 《网络攻防实践》期末大作业
  • 原文地址:https://www.cnblogs.com/lmjer/p/8846947.html
Copyright © 2011-2022 走看看