zoukankan      html  css  js  c++  java
  • CodeForces 55D Beautiful numbers

    Beautiful numbers

    Description

    Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits. We will not argue with this and just count the quantity of beautiful numbers in given ranges.

    Input

    The first line of the input contains the number of cases t (1 ≤ t ≤ 10). Each of the next t lines contains two natural numbers li and ri (1 ≤ li ≤ ri ≤ 9 ·1018).

    Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).

    Output

    Output should contain t numbers — answers to the queries, one number per line — quantities of beautiful numbers in given intervals (from li to ri, inclusively).

    Sample Input

    Input
    1
    1 9
    Output
    9
    Input
    1
    12 15
    Output
    2

    题意是给出一个范围,求这个范围中beautiful number的数量,beautiful number就是指一个数能被自身各个位置上的数整除。
    显然的,beautiful number自身一定要被各位上的数的最小公倍数整除。0~9的最小公倍数种类实际上是很少的,也是很小的(2520)。因此可以用dp[20][50][2521]来保存状态。dp[pos][id][lcm], id指的是某种最小公倍数。因为最小公倍数最大只有2520,所以可以num %= 2520,答案不变。接下来就可以上数位dp模板了

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    using namespace std;
    #define ll long long
    
    int dig[50];
    ll dp[20][50][2521];
    int id[2521];
    
    ll getlcm(ll a, ll b) {
        return a / __gcd(a, b) * b;
    }
    
    ll dfs(int pos, ll lcm, ll sum, int lim) {
        if(pos == -1) return sum % lcm == 0;
        if(dp[pos][id[lcm]][sum] != -1 && !lim) return dp[pos][id[lcm]][sum];
        int End = lim ? dig[pos] : 9;
        ll ret = 0;
        for(int i = 0; i <= End; i++) {
            ll nlcm = lcm;
            if(i) nlcm = getlcm(nlcm, i);
            ll nsum = sum * 10 + i;
            if(pos) nsum %= 2520;
            ret += dfs(pos - 1, nlcm, nsum, i == End && lim);
        }
        if(!lim) dp[pos][id[lcm]][sum] = ret;
        return ret;
    }
    
    ll func(ll a) {
        int n = 0;
        while(a) {
            dig[n++] = a % 10;
            a /= 10;
        }
        return dfs(n - 1, 1, 0, 1);
    }
    
    void init() {
        int tmp = 0;
        for(int i = 1; i <= 2520; i++) if(2520 % i == 0) id[i] = tmp++;
        memset(dp, -1, sizeof(dp));
    }
    
    int main() {
        int t;
        init();
        scanf("%d", &t);
        while(t--) {
            ll a, b;
            scanf("%I64d %I64d", &a, &b);
            printf("%I64d
    ", func(b) - func(a - 1));
        }
    }
     
  • 相关阅读:
    Oracle创建上下文 SYS_CONTEXT
    闪回版本查询
    物化视图创建案例
    Oracle 多租户环境学习路线图
    【Mysql MHA】CentOS7.6+Mysql8.0.16 入坑
    【翻译】--19C Oracle 安装指导
    Docker(3)---常用命令
    Docker(2)---安装(设置镜像加速器)
    Docker(1)---基础概念
    AMQP高级消息队列协议
  • 原文地址:https://www.cnblogs.com/lonewanderer/p/5654599.html
Copyright © 2011-2022 走看看