zoukankan      html  css  js  c++  java
  • POJ 3176 Cow Bowling

    Cow Bowling
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 18561   Accepted: 12360

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this:

              7
    

    3 8

    8 1 0

    2 7 4 4

    4 5 2 6 5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame.

    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N

    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    Hint

    Explanation of the sample:

              7
    
    *
    3 8
    *
    8 1 0
    *
    2 7 4 4
    *
    4 5 2 6 5
    The highest score is achievable by traversing the cows as shown above.
     
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 #include <string>
     5 #include <string.h>
     6 #include <cmath>
     7 
     8 using namespace std;
     9 
    10 
    11 int main(){
    12     int N;
    13     cin>>N;
    14     int **way = new int*[N+1];
    15     for(int i = 0;i<N+1;++i){
    16         way[i] = new int[i+2];
    17     }
    18     for(int i = 1;i<N+1;++i){
    19         for(int j = 1;j<=i;++j){
    20             cin>>way[i][j];
    21         }
    22     }
    23     way[0][1] = 0;
    24     for(int i = 0;i<N+1;++i){
    25         way[i][0] = 0;
    26     }
    27     //dp
    28     for(int i = 1;i<N+1;++i){
    29         for(int j = 1;j<=i;++j){
    30             way[i][j] += max(way[i-1][j],way[i-1][j-1]);
    31         }
    32     }
    33 
    34     int max_weight = 0;
    35     for(int j = 1;j<=N;++j){
    36         if(way[N][j]>max_weight)max_weight = way[N][j];
    37     }
    38     cout<<max_weight<<endl;
    39 
    40     for(int i = 0;i<N+1;++i)delete way[i];
    41     delete way;
    42     return 0;
    43 }
  • 相关阅读:
    Android的目录结构说明
    IOS-线程(GCD)
    iOS UI-线程(NSThread)及其安全隐患与通信
    iOS UI-自动布局(AutoLayout)
    iOS UI-自动布局(Autoresizing)
    IOS-Core Data的使用
    OC 数据持久化(数据本地化)- 本地存储
    iOS UI-应用管理(使用Cell模板)
    IOS UI-QQ好友列表
    IOS-多线程
  • 原文地址:https://www.cnblogs.com/lueagle/p/6550074.html
Copyright © 2011-2022 走看看