zoukankan      html  css  js  c++  java
  • Mahout快速入门教程 分类: B10_计算机基础 2015-03-07 16:20 508人阅读 评论(0) 收藏


           Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现、分类、聚类等。Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。

    一、Mahout安装、配置

    1、下载并解压Mahout
    http://archive.apache.org/dist/mahout/
    tar -zxvf mahout-distribution-0.9.tar.gz

    2、配置环境变量
    # set mahout environment
    export MAHOUT_HOME=/mnt/jediael/mahout/mahout-distribution-0.9
    export MAHOUT_CONF_DIR=$MAHOUT_HOME/conf
    export PATH=$MAHOUT_HOME/conf:$MAHOUT_HOME/bin:$PATH

    3、安装mahout
    [jediael@master mahout-distribution-0.9]$ pwd
    /mnt/jediael/mahout/mahout-distribution-0.9
    [jediael@master mahout-distribution-0.9]$ mvn install

    4、验证Mahout是否安装成功
        执行命令mahout。若列出一些算法,则成功:

    [jediael@master mahout-distribution-0.9]$ mahout
    Running on hadoop, using /mnt/jediael/hadoop-1.2.1/bin/hadoop and HADOOP_CONF_DIR=
    MAHOUT-JOB: /mnt/jediael/mahout/mahout-distribution-0.9/examples/target/mahout-examples-0.9-job.jar
    An example program must be given as the first argument.
    Valid program names are:
      arff.vector: : Generate Vectors from an ARFF file or directory
      baumwelch: : Baum-Welch algorithm for unsupervised HMM training
      canopy: : Canopy clustering
      cat: : Print a file or resource as the logistic regression models would see it
      cleansvd: : Cleanup and verification of SVD output
      clusterdump: : Dump cluster output to text
      clusterpp: : Groups Clustering Output In Clusters
      cmdump: : Dump confusion matrix in HTML or text formats
      concatmatrices: : Concatenates 2 matrices of same cardinality into a single matrix
      cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
      cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally.
      evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
      fkmeans: : Fuzzy K-means clustering
      hmmpredict: : Generate random sequence of observations by given HMM
      itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
      kmeans: : K-means clustering
      lucene.vector: : Generate Vectors from a Lucene index
      lucene2seq: : Generate Text SequenceFiles from a Lucene index
      matrixdump: : Dump matrix in CSV format
      matrixmult: : Take the product of two matrices
      parallelALS: : ALS-WR factorization of a rating matrix
      qualcluster: : Runs clustering experiments and summarizes results in a CSV
      recommendfactorized: : Compute recommendations using the factorization of a rating matrix
      recommenditembased: : Compute recommendations using item-based collaborative filtering
      regexconverter: : Convert text files on a per line basis based on regular expressions
      resplit: : Splits a set of SequenceFiles into a number of equal splits
      rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
      rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
      runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model
      runlogistic: : Run a logistic regression model against CSV data
      seq2encoded: : Encoded Sparse Vector generation from Text sequence files
      seq2sparse: : Sparse Vector generation from Text sequence files
      seqdirectory: : Generate sequence files (of Text) from a directory
      seqdumper: : Generic Sequence File dumper
      seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives
      seqwiki: : Wikipedia xml dump to sequence file
      spectralkmeans: : Spectral k-means clustering
      split: : Split Input data into test and train sets
      splitDataset: : split a rating dataset into training and probe parts
      ssvd: : Stochastic SVD
      streamingkmeans: : Streaming k-means clustering
      svd: : Lanczos Singular Value Decomposition
      testnb: : Test the Vector-based Bayes classifier
      trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
      trainlogistic: : Train a logistic regression using stochastic gradient descent
      trainnb: : Train the Vector-based Bayes classifier
      transpose: : Take the transpose of a matrix
      validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
      vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors
      vectordump: : Dump vectors from a sequence file to text
      viterbi: : Viterbi decoding of hidden states from given output states sequence




    二、使用简单示例验证mahout
    1、启动Hadoop
    2、下载测试数据
               http://archive.ics.uci.edu/ml/databases/synthetic_control/链接中的synthetic_control.data
    或者百度一下也很容易找到这个示例数据。
    3、上传测试数据
    hadoop fs -put synthetic_control.data testdata
    4、 使用Mahout中的kmeans聚类算法,执行命令:
    mahout -core  org.apache.mahout.clustering.syntheticcontrol.kmeans.Job
    花费9分钟左右完成聚类 。
    5、查看聚类结果
        执行hadoop fs -ls /user/root/output,查看聚类结果。

    [jediael@master mahout-distribution-0.9]$ hadoop fs -ls output
    Found 15 items
    -rw-r--r--   2 jediael supergroup        194 2015-03-07 15:07 /user/jediael/output/_policy
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:07 /user/jediael/output/clusteredPoints
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:02 /user/jediael/output/clusters-0
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:02 /user/jediael/output/clusters-1
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:07 /user/jediael/output/clusters-10-final
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:03 /user/jediael/output/clusters-2
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:03 /user/jediael/output/clusters-3
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:04 /user/jediael/output/clusters-4
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:04 /user/jediael/output/clusters-5
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:05 /user/jediael/output/clusters-6
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:05 /user/jediael/output/clusters-7
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:06 /user/jediael/output/clusters-8
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:07 /user/jediael/output/clusters-9
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:02 /user/jediael/output/data
    drwxr-xr-x   - jediael supergroup          0 2015-03-07 15:02 /user/jediael/output/random-seeds





     
     

    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    drop table 、delete table和truncate table的区别
    润乾报表 删除导出excel弹出框里的选项
    学习笔记: 委托解析和封装,事件及应用
    学习笔记: 特性Attribute详解,应用封装
    学习笔记: 反射应用、原理,完成扩展,emit动态代码
    学习笔记: 泛型应用、原理、协变逆变、泛型缓存
    jmeter4.x centos7部署笔记
    rabbitmq3.7.5 centos7 集群部署笔记
    rabbitmq3.8.3 centos7 安装笔记
    UVA-12436 Rip Van Winkle's Code (线段树区间更新)
  • 原文地址:https://www.cnblogs.com/lujinhong2/p/4637210.html
Copyright © 2011-2022 走看看