zoukankan      html  css  js  c++  java
  • 椭圆曲线密码算法--点乘点加运算

    一、关于椭圆曲线密码算法中点加、点乘的例子

    As an example of the encryption process (taken from [KOBL94]), take p=751, Ep(1,188), which is equivalent to the curve y2=x3-x+188; and G=(0,376). Suppose the A wishes to send a message to B that is encoded in the elliptic point Pm=(562,201) and that A selects the random number k=386. B’s public key is Pb=(201,5). We have 386(0,376)=(676,558), and (562,201)+386(201,5)=(385,328). Thus, A sends the cipher text {(676,558), (385,328}.

     1、计算386(0,376)

     386(0,376)

    =(256 + 128 + 2)(0,376)

    =256(0,376) + 128(0,376) + 2(0,376)

    1) 2(0,376)即为2G

    相同点相加,故

    t = (3xp+ a)/(2yp) (mod p)

    =(3 x 02 - 1)/(2 x 376) (mod p)

    =-752-1 (mod p)

    因1 x 752 = 1 mod p,故752-1 = 1

    =-1 (mod p)

    = p - 1

    = 751 - 1

    = 750

    2G=(0,376)+(0,376)

    =(7502 - 0 - 0 (mod p), 750(0 - xr) - 376 (mod p))

    =(1, -750-376 (mod p))

    =(1, -375 (mod p))

    =(1, p - 375)

    =(1, 376) // 2G

    2) 4G = 2(2G) = (1,376) + (1,376)

    t = (3xp+ a)/(2yp) (mod p)

    =(3 x 12 - 1)/(2 x 376) (mod p)

    =376-1 (mod p)

    因2 x 376 = 1 mod p,故376-1 = 2

    =2 (mod p)

    =2

    4G=(1,376)+(1,376)

    =(22 - 1 - 1 (mod p), 2(1 - xr) - 376 (mod p))

    =(2, -378 (mod p))

    =(2, p - 378)

    =(2, 373) // 4G

    3) 8G = 2(4G) = (2,373) + (2,373)

    t = (3xp+ a)/(2yp) (mod p)

    =(3 x 22 - 1)/(2 x 373) (mod p)

    =11 x 746-1 (mod p)

    因150 x 746 = 1 mod p,故746-1 = 150

    =11 x 150 (mod p)

    =148

    8G=(2,373) + (2,373)

    =(1482 - 2 - 2 (mod p), 148(2 - xr) - 373 (mod p))

    =(121, -148 x 119 - 373 (mod p))

    =(121, -712 (mod p))

    =(121, p - 712)

    =(121, 39) // 8G

    4) 16G = 2(8G) = (121,39) + (121,39)

    t = (3xp+ a)/(2yp) (mod p)

    =(3 x 1212 - 1)/(2 x 39) (mod p)

    =364 x 78-1 (mod p)

    因337 x 78 = 1 mod p,故78-1 = 337

    =364 x 337 (mod p)

    =255

    16G=(121,39) + (121,39)

    =(2552 - 121 - 121 (mod p), 255(121 - xr) - 39 (mod p))

    =(197, 255 x (-76) - 39 (mod p))

    =(197, -19419 (mod p))

    =(197, -644 (mod p))

    =(197, p - 644)

    =(197, 107) // 16G

    5) 32G = 2(16G) = (197,107) + (197,107)

    t = (3xp+ a)/(2yp) (mod p)

    =(3 x 1972 - 1)/(2 x 107) (mod p)

    =21 x 214-1 (mod p)

    因186 x 214 = 1 mod p,故214-1 = 186

    =21 x 186 (mod p)

    =151

    32G=(197,107) + (197,107)

    =(1512 - 197 - 197 (mod p), 151(197 - xr) - 107 (mod p))

    =(628, -602 (mod p))

    =(628, p - 602)

    =(628, 149) // 32G

    6) 64G = 2(32G) = (628,149) + (628,149) 

    t = (3xp+ a)/(2yp) (mod p)

    =(3 x 6282 - 1)/(2 x 149) (mod p)

    =326 x 298-1 (mod p)

    因688 x 298 = 1 mod p,故298-1 = 688

    =326 x 688 (mod p)

    =490

    64G= (628, 149) + (628, 149) 

    =(4902 - 628 - 628 (mod p), 490(628 - xr) - 149 (mod p))

    =(26, 439) // 64G

    7) 128G = 2(64G) = (26,439) + (26,439

    t = (3xp+ a)/(2yp) (mod p)

    =(3 x 262 - 1)/(2 x 439) (mod p)

    =525 x 127-1 (mod p)

    因615 x 127 = 1 mod p,故127-1 = 615

    =525 x 615 (mod p)

    =696

    128G= (26, 439) + (26, 439) 

    =(6962 - 2- 2(mod p), 696(26 - xr) - 439 (mod p))

    =(720,-570 (mod p))

    =(720, 181) // 128G

    8) 256G = 2(128G) = (720,181) + (720,181

    t = (3xp+ a)/(2yp) (mod p)

    =(3 x 7202 - 1)/(2 x 181) (mod p)

    =629 x 362-1 (mod p)

    因139 x 362 = 1 mod p,故362-1 = 139

    =629 x 139 (mod p)

    =315

    256G= (720,181) + (720,181

    =(3152 - 720 - 720 (mod p), 315(720 - xr) - 181 (mod p))

    =(155,558) // 256G

    2、计算386(0,376)

    386(0,376) =256(0,376) + 128(0,376) + 2(0,376)

    386(0,376) =(155,558) + (720, 181) + (1, 376)

    因 P != Q,故 t = (y- yP) / (x- xP) (mod p)

    t =(181 - 558)/(720 - 155) (mod p)

    t =-377 x 565-1 (mod p)

    因537 x 565 = 1 (mod p),故565-1 = 537

    t =-377 x 537 (mod p)

    t =-430 (mod p)

    t =p - 430

    t =321

    386(0,376) =(155,558) + (720, 181) + (1, 376)

    386(0,376) =(3212 - 155 - 720, 321(155 - xr) - 558) (mod p) + (1,376) (mod p)

    386(0,376) =(30, 515) + (1, 376) (mod p)

    再因 P != Q,故 t = (y- yP) / (x- xP) (mod p)

    t =(376 - 515) / (1 - 30) (mod p)

    t =(-139) / (-29) (mod p)

    t = 139 x 29 -1 (mod p)

    因259 x 29 = 1 (mod p),故29-1 = 259

    t = 139 x 259 (mod p)

    t =704 (mod p)

    t =704

    386(0,376) =(30, 515) + (1, 376) (mod p)

    386(0,376) =(7042 - 30 - 1, 704(30 - xr) - 515) (mod p)

    386(0,376) =(676, -193) (mod p)

    386(0,376) =(676, 558) (mod p)

    3、一个求逆的简单程序

    #include <stdio.h>
    
    int main(void)
    {
        int i;
        int value = 29;
        
        for (i = 1; i < 751; ++i) {
            if (i * value % 751 == 1) {
                printf("iv value of [%d] is [%d]
    ", value, i);
                break;
            }
        }
        
        if (i == 751) {
            printf("no value
    ");
        }
        return 0;
    }

    【参考文献】

     

  • 相关阅读:
    sqlserver中临时表、row-number、update更新自己
    easyui 实现Tooltip
    easyui 添加dialog
    转载 50种方法优化SQL Server数据库查询
    用正则将空格给去掉
    java连接redis无法连接,报异常RedisConnectionException
    springcloud的Turbine配置监控多个服务的一些坑!!!!InstanceMonitor$MisconfiguredHostException,No message available","path":"/actuator/hystrix.stream,页面不显示服务或者一直loading
    CentOS7最小化安装之后无法联网以及无法使用ifconfig以及无法使用yum安装软件
    required_new spring事务传播行为无效碰到的坑!
    推荐一下牛逼的谷歌浏览器插件!!!非常好用
  • 原文地址:https://www.cnblogs.com/luop/p/15134285.html
Copyright © 2011-2022 走看看