Solved:3
Rank:214
08 Coin
题意:n组硬币 每组有两个 分别有自己的价值 每组的第一个被拿了之后才能拿第二个
问拿1,2....2n个硬币的最大价值
题解:之前贪心带反悔的做法写不出来... 然后学习下别人的贪心策略 考虑从0或1开始 每次拿两个
那么要么是拿一组 要么是拿两个散装最大的 然后模拟一下
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; int a[MAXN], b[MAXN], vis[MAXN], vvis[MAXN], now; int ans[MAXN << 1]; struct node { int a, b, id; friend bool operator < (node A, node B) { if(A.a + A.b == B.a + B.b) return A.id < B.id; else return A.a + A.b < B.a + B.b; } }; node sum[MAXN]; priority_queue<node> que; void solve(int i) { node tmp1 = {0, 0, 0}, tmp2 = {0, 0, 0}, tmp3 = {0, 0, 0}; while(now >= 1 && vis[now]) now--; if(now >= 1) tmp1 = sum[now]; while(!que.empty() && vvis[que.top().id]) que.pop(); if(!que.empty()) tmp2 = que.top(), que.pop(); while(!que.empty() && vvis[que.top().id]) que.pop(); if(!que.empty()) tmp3 = que.top(), que.pop(); if(tmp1.a + tmp1.b > tmp2.a + tmp2.b + tmp3.a + tmp3.b) { ans[i] = ans[i - 2] + tmp1.a + tmp1.b; vis[now] = 1; vvis[now] = 1; que.push(tmp2); que.push(tmp3); } else { ans[i] = ans[i - 2] + tmp2.a + tmp2.b + tmp3.a + tmp3.b; if(tmp2.a) { vis[tmp2.id] = 1; que.push((node){0, sum[tmp2.id].b, tmp2.id}); } else vvis[tmp2.id] = 1; if(tmp3.a) { vis[tmp3.id] = 1; que.push((node){0, sum[tmp3.id].b, tmp3.id}); } else vvis[tmp3.id] = 1; } } int main() { int T; scanf("%d", &T); while(T--) { int n; scanf("%d", &n); for(int i = 1; i <= n; i++) scanf("%d%d", &a[i], &b[i]), sum[i].a = a[i], sum[i].b = b[i], sum[i].id = i, vis[i] = vvis[i] = 0; sort(sum + 1, sum + 1 + n); now = n; while(!que.empty()) que.pop(); ans[0] = 0; for(int i = 1; i <= n; i++) que.push((node){sum[i].a, 0, i}); for(int i = 2; i <= n * 2; i += 2) solve(i); while(!que.empty()) que.pop(); now = n; for(int i = 1; i <= n; i++) que.push((node){sum[i].a, 0, i}), vis[i] = vvis[i] = 0; node t1 = que.top(); que.pop(); ans[1] = t1.a; que.push((node){0, sum[t1.id].b, t1.id}); vis[t1.id] = 1; for(int i = 3; i <= n * 2; i += 2) solve(i); for(int i = 1; i <= n * 2; i++) { if(i != n * 2) printf("%d ", ans[i]); else printf("%d ", ans[i]); } } return 0; }
11 Make Rounddog Happy (启发式分治)
题意:1e5个数 统计多少个区间满足 区间最大 - 区间长度 <= k 且区间内没有相同的数
题解:都说这个题是这种套路.... 用st表预处理区间最大值 然后再预处理每个数往左往右没有相同数的最远距离
然后每次找到区间最大值 暴力从区间小的一边枚举答案 然后分治
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int MAXN = 1e6 + 5; ll ans; int n, K; int a[MAXN]; int st[MAXN][21], lg[MAXN]; int L[MAXN], R[MAXN]; int vis[MAXN]; void solve(int l, int r) { if(l > r) return; int k = lg[r - l + 1]; int pos; if(a[st[l][k]] >= a[st[r - (1 << k) + 1][k]]) pos = st[l][k]; else pos = st[r - (1 << k) + 1][k]; if(pos - l <= r - pos) { for(int i = l; i <= pos; i++) { //枚举左端点 int rr = a[pos] - K + i - 1; //移项之后 满足rr <= 区间右端点就是满足题意的 rr = max(rr, pos); //大于pos 最大值才成立 int tr = min(R[i], r); if(tr >= rr) ans += 1LL * (tr - rr + 1); } } else { for(int i = r; i >= pos; i--) { int ll = K - a[pos] + i + 1; ll = min(ll, pos); int tl = max(L[i], l); if(tl <= ll) ans += 1LL * (ll - tl + 1); } } solve(l, pos - 1); solve(pos + 1, r); } int main() { lg[0] = -1; for(int i = 1; i <= MAXN - 2; i++) lg[i] = lg[i >> 1] + 1; int T; scanf("%d", &T); while(T--) { ans = 0; scanf("%d%d", &n, &K); for(int i = 1; i <= n; i++) scanf("%d", &a[i]), st[i][0] = i; for(int i = 1; i <= 20; i++) for(int j = 1; j <= n + 1 - (1 << i); j++) { if(a[st[j + (1 << (i - 1))][i - 1]] >= a[st[j][i - 1]]) st[j][i] = st[j + (1 << (i - 1))][i - 1]; else st[j][i] = st[j][i - 1]; } memset(vis, 0, sizeof(vis)); L[1] = 1; vis[a[1]] = 1; for(int i = 2; i <= n; i++) { if(vis[a[i]]) L[i] = max(L[i - 1], vis[a[i]] + 1); else L[i] = L[i - 1]; vis[a[i]] = i; } memset(vis, 0, sizeof(vis)); R[n] = n; vis[a[n]] = n; for(int i = n - 1; i >= 1; i--) { if(vis[a[i]]) R[i] = min(R[i + 1], vis[a[i]] - 1); else R[i] = R[i + 1]; vis[a[i]] = i; } solve(1, n); printf("%lld ", ans); } return 0; }