zoukankan      html  css  js  c++  java
  • CodeForce-1C Ancient Berland Circus

    Ancient Berland Circus
     

    Nowadays all circuses in Berland have a round arena with diameter 13 meters, but in the past things were different.

    In Ancient Berland arenas in circuses were shaped as a regular (equiangular) polygon, the size and the number of angles could vary from one circus to another. In each corner of the arena there was a special pillar, and the rope strung between the pillars marked the arena edges.

    Recently the scientists from Berland have discovered the remains of the ancient circus arena. They found only three pillars, the others were destroyed by the time.

    You are given the coordinates of these three pillars. Find out what is the smallest area that the arena could have.

    Input

    The input file consists of three lines, each of them contains a pair of numbers –– coordinates of the pillar. Any coordinate doesn't exceed 1000 by absolute value, and is given with at most six digits after decimal point.

    Output

    Output the smallest possible area of the ancient arena. This number should be accurate to at least 6 digits after the decimal point. It's guaranteed that the number of angles in the optimal polygon is not larger than 100.

    Examples
    Input
    0.000000 0.000000
    1.000000 1.000000
    0.000000 1.000000
    Output
    1.00000000

    题意:
      给出三个点,以三个点为顶点的正多边形的最小面积
    思路:
      三个点能围成一个愿,那么在圆内,边数越小面积越小,所以求边数最小的,

      先求出边对应的圆心角,再求三个边圆心角的最大公约数
    知识相关:知道三边求面积,知道3边及面积求外接圆半径。

    AC代码:
    # include <iostream>
    # include <cmath>
    # include <cstdio>
    using namespace std;
    #define eqs 0.01
    const double PI = acos(-1.0);
    
    struct Point
    {
    	double x;
    	double y;
    };
    
    Point operator-(Point v1, Point v2) // 向量相减
    {
        v1.x -= v2.x;
        v1.y -= v2.y;
        return v1;
    }
    
    double dis(Point v) // 取模
    {
        return sqrt(v.x * v.x + v.y * v.y);
    }
    
    double fgcd(double a, double b)
    {
        return a < eqs ? b : fgcd(fmod(b,a), a);
    }
      
    int main()
    {
    	Point a, b, c;
    	while(cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y)
    	{
    		double A = dis(a - b);
    		double B = dis(b - c);
    		double C = dis(a - c);
    		// 求面积
    		double p = (A + B + C) / 2.0 ;
    		double s = sqrt(p * (p - A) * (p - B) * (p - C)) ;
    		// 求半径
    		double r = A * B * C / ( 4 * s );
    		
    		
    		if(A > C)
    			swap(A, C);
    		if(B > C)
    			swap(B, C);
    		
    		double angA = 2 * asin(A / (2 * r)) ;
    		double angB = 2 * asin(B / (2 * r)) ;
    		double angC = 2 * PI - angA - angB ;
    		
    		double g = fgcd(angC, fgcd(angA, angB));
    		
    		// 求内接正多边形面积
    		double result = PI*r*r*sin(g)/g;
    		printf("%.6lf
    ", result);
    	}
    	
    	return 0;
    }
    
    生命不息,奋斗不止,这才叫青春,青春就是拥有热情相信未来。
  • 相关阅读:
    队列课下作业
    20162305 2017-2018-1 《程序设计与数据结构》第6周学习总结
    20162305 2017-2018-1 《程序设计与数据结构》第5周学习总结
    线性结构 实验报告 20162305
    算法复杂度-实验博客
    2017-2018-1 《程序设计与数据结构》第3周学习总结
    20162305 2017-2018-1 《程序设计与数据结构》第2周学习总结
    20162316刘诚昊 课下排序测试
    20162316刘诚昊 17年10月9日测验“排序课堂测试”
    20162316刘诚昊 第五周学习总结
  • 原文地址:https://www.cnblogs.com/lyf-acm/p/5787464.html
Copyright © 2011-2022 走看看