zoukankan      html  css  js  c++  java
  • 非常全面的SQL Server巡检脚本来自sqlskills团队的Glenn Berry

    非常全面的SQL Server巡检脚本来自sqlskills团队的Glenn Berry 

    Glenn Berry 曾承诺对这个脚本持续更新

    -- SQL Server 2012 Diagnostic Information Queries
    -- Glenn Berry 
    -- April 2015
    -- Last Modified: April 27, 2015
    -- http://sqlserverperformance.wordpress.com/
    -- http://sqlskills.com/blogs/glenn/
    -- Twitter: GlennAlanBerry
    
    -- Please listen to my Pluralsight courses
    -- http://www.pluralsight.com/author/glenn-berry
    
    -- Many of these queries will not work if you have databases in 80 compatibility mode
    -- Please make sure you are using the correct version of these diagnostic queries for your version of SQL Server
    
    --******************************************************************************
    --*   Copyright (C) 2015 Glenn Berry, SQLskills.com
    --*   All rights reserved. 
    --*
    --*   For more scripts and sample code, check out 
    --*      http://sqlskills.com/blogs/glenn
    --*
    --*   You may alter this code for your own *non-commercial* purposes. You may
    --*   republish altered code as long as you include this copyright and give due credit. 
    --*
    --*
    --*   THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF 
    --*   ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED 
    --*   TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
    --*   PARTICULAR PURPOSE. 
    --*
    --******************************************************************************
    
    -- Check the major product version to see if it is SQL Server 2012
    IF NOT EXISTS (SELECT * WHERE CONVERT(varchar(128), SERVERPROPERTY('ProductVersion')) LIKE '11%')
        BEGIN
            DECLARE @ProductVersion varchar(128) = CONVERT(varchar(128), SERVERPROPERTY('ProductVersion'));
            RAISERROR ('Script does not match the ProductVersion [%s] of this instance. Many of these queries may not work on this version.' , 18 , 16 , @ProductVersion);
        END
        ELSE
            PRINT N'You have the correct major version of SQL Server for this diagnostic information script';
    
    -- Instance level queries *******************************
    
    -- SQL and OS Version information for current instance  (Query 1) (Version Info)
    SELECT @@SERVERNAME AS [Server Name], @@VERSION AS [SQL Server and OS Version Info];
    
    -- SQL Server 2012 RTM Branch Builds                        SQL Server 2012 SP1 Branch Builds                    SQL Server 2012 SP2 Branch Builds
    -- Build            Description            Release Date        Build            Description        Release Date        Build            Description            Release Date
    -- 11.0.2100        RTM                      3/6/2012
    -- 11.0.2316        RTM CU1                 4/12/2012
    -- 11.0.2325        RTM CU2                 6/18/2012 -->        11.0.3000        SP1 RTM            11/7/2012
    -- 11.0.2332        RTM CU3                 8/31/2012
    -- 11.0.2376        RTM CU3 + QFE         10/9/2012
    -- 11.0.2383        RTM CU4                10/15/2012 -->        11.0.3321        SP1 CU1            11/20/2012
    -- 11.0.2395        RTM CU5                12/17/2012 -->      11.0.3339        SP1 CU2            1/21/2013
    -- 11.0.2401        RTM CU6              2/18/2013 -->      11.0.3349       SP1 CU3            3/18/2013
    -- 11.0.2405        RTM CU7              4/15/2013 -->      11.0 3368       SP1 CU4         5/30/2013
    -- 11.0.2410        RTM CU8              6/17/2013 -->      11.0.3373       SP1 CU5         7/15/2013
    -- 11.0.2419        RTM CU9              8/20/2013 -->      11.0.3381        SP1 CU6            9/16/2013
    -- 11.0.2420        RTM CU10            10/21/2013 -->        11.0.3393       SP1 CU7         11/18/2013
    -- 11.0.2424        RTM CU11            12/16/2003 -->      11.0.3401       SP1 CU8         1/20/2014
    --                                                          11.0.3412       SP1 CU9         3/17/2014 -->        11.0.5058        SP2 RTM                6/10/2014
    --                                                          11.0.3431       SP1 CU10        5/19/2014
    --                                                          11.0.3449       SP1 CU11        7/21/2014 -->        11.0.5532        SP2 CU1                7/23/2014
    --                                                          11.0.3470       SP1 CU12        9/15/2014 -->       11.0.5548       SP2 CU2             9/15/2014
    --                                                          11.0.3482        SP1 CU13        11/17/2014-->       11.0.5556        SP2 CU3            11/17/2014
    --                                                          11.0.3486       SP1 CU14        1/19/2015 -->       11.0.5569       SP2 CU4             1/19/2015
    --                                                                                                              11.0.5571       SP2 CU4 + COD HF     2/4/2015  (this includes the AlwaysOn AG hotfix that is in SP2 CU5)
    --                                                          11.0.3487        SP1 CU15        3/16/2015           11.0.5582       SP2 CU5             3/16/2015
    
    -- The SQL Server 2012 builds that were released after SQL Server 2012 was released
    -- http://support.microsoft.com/kb/2692828
    
    -- The SQL Server 2012 builds that were released after SQL Server 2012 Service Pack 1 was released
    -- http://support.microsoft.com/kb/2772858
    
    -- SQL Server 2012 SP2 build versions (new format for the build list KB article)
    -- http://support.microsoft.com/kb/2983249
    
    -- Recommended updates and configuration options for SQL Server 2012 and SQL Server 2014 used with high-performance workloads
    -- http://support.microsoft.com/kb/2964518/EN-US
    
    -- Performance and Stability Related Fixes in Post-SQL Server 2012 SP2 Builds
    -- http://www.sqlskills.com/blogs/glenn/performance-and-stability-related-fixes-in-post-sql-server-2012-sp2-builds/
    
    
    -- When was SQL Server installed  (Query 2) (SQL Server Install Date)  
    SELECT @@SERVERNAME AS [Server Name], create_date AS [SQL Server Install Date] 
    FROM sys.server_principals WITH (NOLOCK)
    WHERE name = N'NT AUTHORITYSYSTEM'
    OR name = N'NT AUTHORITYNETWORK SERVICE' OPTION (RECOMPILE);
    
    -- Tells you the date and time that SQL Server was installed
    -- It is a good idea to know how old your instance is
    
    
    -- Get selected server properties (SQL Server 2012)  (Query 3) (Server Properties)
    SELECT SERVERPROPERTY('MachineName') AS [MachineName], SERVERPROPERTY('ServerName') AS [ServerName],  
    SERVERPROPERTY('InstanceName') AS [Instance], SERVERPROPERTY('IsClustered') AS [IsClustered], 
    SERVERPROPERTY('ComputerNamePhysicalNetBIOS') AS [ComputerNamePhysicalNetBIOS], 
    SERVERPROPERTY('Edition') AS [Edition], SERVERPROPERTY('ProductLevel') AS [ProductLevel], 
    SERVERPROPERTY('ProductVersion') AS [ProductVersion], SERVERPROPERTY('ProcessID') AS [ProcessID],
    SERVERPROPERTY('Collation') AS [Collation], SERVERPROPERTY('IsFullTextInstalled') AS [IsFullTextInstalled], 
    SERVERPROPERTY('IsIntegratedSecurityOnly') AS [IsIntegratedSecurityOnly],
    SERVERPROPERTY('IsHadrEnabled') AS [IsHadrEnabled], SERVERPROPERTY('HadrManagerStatus') AS [HadrManagerStatus];
    
    -- This gives you a lot of useful information about your instance of SQL Server,
    -- such as the ProcessID for SQL Server and your collation
    -- The last two columns are new for SQL Server 2012
    
    
    -- Get SQL Server Agent jobs and Category information (Query 4) (SQL Server Agent Jobs)
    SELECT sj.name AS [JobName], sj.[description] AS [JobDescription], SUSER_SNAME(sj.owner_sid) AS [JobOwner],
    sj.date_created, sj.[enabled], sj.notify_email_operator_id, sj.notify_level_email, sc.name AS [CategoryName],
    js.next_run_date, js.next_run_time
    FROM msdb.dbo.sysjobs AS sj WITH (NOLOCK)
    INNER JOIN msdb.dbo.syscategories AS sc WITH (NOLOCK)
    ON sj.category_id = sc.category_id
    LEFT OUTER JOIN msdb.dbo.sysjobschedules AS js WITH (NOLOCK)
    ON sj.job_id = js.job_id
    ORDER BY sj.name OPTION (RECOMPILE);
    
    -- Gives you some basic information about your SQL Server Agent jobs, who owns them and how they are configured
    -- Look for Agent jobs that are not owned by sa
    -- Look for jobs that have a notify_email_operator_id set to 0 (meaning no operator)
    -- Look for jobs that have a notify_level_email set to 0 (meaning no e-mail is ever sent)
    --
    -- MSDN sysjobs documentation
    -- http://msdn.microsoft.com/en-us/library/ms189817.aspx
    
    
    -- Get SQL Server Agent Alert Information (Query 5) (SQL Server Agent Alerts)
    SELECT name, event_source, message_id, severity, [enabled], has_notification, 
           delay_between_responses, occurrence_count, last_occurrence_date, last_occurrence_time
    FROM msdb.dbo.sysalerts WITH (NOLOCK)
    ORDER BY name OPTION (RECOMPILE);
    
    -- Gives you some basic information about your SQL Server Agent Alerts (which are different from SQL Server Agent jobs)
    -- Read more about Agent Alerts here: http://www.sqlskills.com/blogs/glenn/creating-sql-server-agent-alerts-for-critical-errors/
    
    
    -- Returns a list of all global trace flags that are enabled (Query 6) (Global Trace Flags)
    DBCC TRACESTATUS (-1);
    
    -- If no global trace flags are enabled, no results will be returned.
    -- It is very useful to know what global trace flags are currently enabled as part of the diagnostic process.
    
    -- Common trace flags that should be enabled in most cases
    -- TF 3226 - Supresses logging of successful database backup messages to the SQL Server Error Log
    -- TF 1118 - Helps alleviate allocation contention in tempdb, SQL Server allocates full extents to each database object, 
    --           thereby eliminating the contention on SGAM pages (more important with older versions of SQL Server)
    --           Recommendations to reduce allocation contention in SQL Server tempdb database
    --           http://support2.microsoft.com/kb/2154845
    
    
    -- Windows information (SQL Server 2012)  (Query 7) (Windows Info)
    SELECT windows_release, windows_service_pack_level, 
           windows_sku, os_language_version
    FROM sys.dm_os_windows_info WITH (NOLOCK) OPTION (RECOMPILE);
    
    -- Gives you major OS version, Service Pack, Edition, and language info for the operating system 
    -- 6.3 is either Windows 8.1 or Windows Server 2012 R2
    -- 6.2 is either Windows 8 or Windows Server 2012
    -- 6.1 is either Windows 7 or Windows Server 2008 R2
    -- 6.0 is either Windows Vista or Windows Server 2008
    
    -- Windows SKU codes
    -- 4 is Enterprise Edition
    -- 7 is Standard Server Edition
    -- 8 is Datacenter Server Edition
    -- 10 is Enterprise Server Edition
    -- 48 is Professional Edition
    
    -- 1033 for os_language_version is US-English
    
    -- SQL Server 2012 requires Windows Server 2008 SP2 or newer
    
    -- Hardware and Software Requirements for Installing SQL Server 2012
    -- http://msdn.microsoft.com/en-us/library/ms143506.aspx
    
    -- Using SQL Server in Windows 8, Windows 8.1, Windows Server 2012 and Windows Server 2012 R2 environments
    -- http://support.microsoft.com/kb/2681562
    
    
    
    -- SQL Server Services information (SQL Server 2012) (Query 8) (SQL Server Services Info)
    SELECT servicename, process_id, startup_type_desc, status_desc, 
    last_startup_time, service_account, is_clustered, cluster_nodename, [filename]
    FROM sys.dm_server_services WITH (NOLOCK) OPTION (RECOMPILE);
    
    -- Tells you the account being used for the SQL Server Service and the SQL Agent Service
    -- Shows the processid, when they were last started, and their current status
    -- Shows whether you are running on a failover cluster instance
    
    
    -- SQL Server NUMA Node information  (Query 9) (SQL Server NUMA Info)
    SELECT node_id, node_state_desc, memory_node_id, processor_group, online_scheduler_count, 
           active_worker_count, avg_load_balance, resource_monitor_state
    FROM sys.dm_os_nodes WITH (NOLOCK) 
    WHERE node_state_desc <> N'ONLINE DAC' OPTION (RECOMPILE);
    
    -- Gives you some useful information about the composition and relative load on your NUMA nodes
    -- You want to see an equal number of schedulers on each NUMA node
    
    
    -- Hardware information from SQL Server 2012  (Query 10) (Hardware Info)
    -- (Cannot distinguish between HT and multi-core)
    SELECT cpu_count AS [Logical CPU Count], scheduler_count, hyperthread_ratio AS [Hyperthread Ratio],
    cpu_count/hyperthread_ratio AS [Physical CPU Count], 
    physical_memory_kb/1024 AS [Physical Memory (MB)], committed_kb/1024 AS [Committed Memory (MB)],
    committed_target_kb/1024 AS [Committed Target Memory (MB)],
    max_workers_count AS [Max Workers Count], affinity_type_desc AS [Affinity Type], 
    sqlserver_start_time AS [SQL Server Start Time], virtual_machine_type_desc AS [Virtual Machine Type]  
    FROM sys.dm_os_sys_info WITH (NOLOCK) OPTION (RECOMPILE);
    
    -- Gives you some good basic hardware information about your database server
    -- Note: virtual_machine_type_desc of HYPERVISOR does not automatically mean you are running SQL Server inside of a VM
    -- It merely indicates that you have a hypervisor running on your host
    
    
    -- Get System Manufacturer and model number from  (Query 11) (System Manufacturer)
    -- SQL Server Error log. This query might take a few seconds 
    -- if you have not recycled your error log recently
    EXEC sys.xp_readerrorlog 0, 1, N'Manufacturer'; 
    
    -- This can help you determine the capabilities
    -- and capacities of your database server
    
    -- Get socket, physical core and logical core count from (Query 12) (Core Counts)
    -- SQL Server Error log. This query might take a few seconds 
    -- if you have not recycled your error log recently
    EXEC sys.xp_readerrorlog 0, 1, N'detected', N'socket';
    
    -- This can help you determine the exact core counts used by SQL Server and whether HT is enabled or not
    -- It can also help you confirm your SQL Server licensing model
    -- Be on the lookout for this message "using 20 logical processors based on SQL Server licensing" which means grandfathered Server/CAL licensing
    -- Note: If you recycle your error logs frequently and your instance has been running long enough,
    -- this query may not return any results, since the original startup information from the first error log
    -- when SQL Server was last started will have been overwritten
    
    
    -- Get processor description from Windows Registry  (Query 13) (Processor Description)
    EXEC sys.xp_instance_regread N'HKEY_LOCAL_MACHINE', N'HARDWAREDESCRIPTIONSystemCentralProcessor', N'ProcessorNameString';
    
    -- Gives you the model number and rated clock speed of your processor(s)
    -- Your processors may be running at less that the rated clock speed due
    -- to the Windows Power Plan or hardware power management
    
    
    -- You can skip the next four queries if you know you don't 
    -- have a clustered instance
    
    -- Shows you where the SQL Server failover cluster diagnostic log is located and how it is configured  (Query 14) (SQL Server Error Log)
    SELECT is_enabled, [path], max_size, max_files
    FROM sys.dm_os_server_diagnostics_log_configurations WITH (NOLOCK) OPTION (RECOMPILE);
    
    -- Knowing this information is important for troubleshooting purposes
    -- Also shows you the location of other error and diagnostic log files
    
    
    -- Get information about your OS cluster (if your database server is in a cluster)  (Query 15) (Cluster Properties)
    SELECT VerboseLogging, SqlDumperDumpFlags, SqlDumperDumpPath, 
           SqlDumperDumpTimeOut, FailureConditionLevel, HealthCheckTimeout
    FROM sys.dm_os_cluster_properties WITH (NOLOCK) OPTION (RECOMPILE);
    
    -- You will see no results if your instance is not clustered
    
    
    -- Get information about your cluster nodes and their status  (Query 16) (Cluster Node Properties)
    -- (if your database server is in a failover cluster)
    SELECT NodeName, status_description, is_current_owner
    FROM sys.dm_os_cluster_nodes WITH (NOLOCK) OPTION (RECOMPILE);
    
    -- Knowing which node owns the cluster resources is critical
    -- Especially when you are installing Windows or SQL Server updates
    -- You will see no results if your instance is not clustered
    
    
    -- Get information about any AlwaysOn AG cluster this instance is a part of (Query 17) (AlwaysOn AG Cluster)
    SELECT cluster_name, quorum_type_desc, quorum_state_desc
    FROM sys.dm_hadr_cluster WITH (NOLOCK) OPTION (RECOMPILE);
    
    -- You will see no results if your instance is not using AlwaysOn AGs
    
    -- Recommended hotfixes and updates for Windows Server 2012 R2-based failover clusters
    -- http://support.microsoft.com/kb/2920151
    
    
    -- Get configuration values for instance  (Query 18) (Configuration Values)
    SELECT name, value, value_in_use, minimum, maximum, [description], is_dynamic, is_advanced
    FROM sys.configurations WITH (NOLOCK)
    ORDER BY name OPTION (RECOMPILE);
    
    -- Focus on these settings:
    -- backup compression default (should be 1 in most cases)
    -- clr enabled (only enable if it is needed)
    -- cost threshold for parallelism (depends on your workload)
    -- lightweight pooling (should be zero)
    -- max degree of parallelism (depends on your workload)
    -- max server memory (MB) (set to an appropriate value, not the default)
    -- optimize for ad hoc workloads (should be 1)
    -- priority boost (should be zero)
    -- remote admin connections (should be 1)
    
    
    
    -- Get information about TCP Listener for SQL Server  (Query 19) (TCP Listener States)
    SELECT listener_id, ip_address, is_ipv4, port, type_desc, state_desc, start_time
    FROM sys.dm_tcp_listener_states WITH (NOLOCK) 
    ORDER BY listener_id OPTION (RECOMPILE);
    
    -- Helpful for network and connectivity troubleshooting
    
    
    
    -- Get information on location, time and size of any memory dumps from SQL Server  (Query 20) (Memory Dump Info)
    SELECT [filename], creation_time, size_in_bytes/1048576.0 AS [Size (MB)]
    FROM sys.dm_server_memory_dumps WITH (NOLOCK) 
    ORDER BY creation_time DESC OPTION (RECOMPILE);
    
    -- This will not return any rows if you have 
    -- not had any memory dumps (which is a good thing)
    
    
    -- File names and paths for TempDB and all user databases in instance  (Query 21) (Database Filenames and Paths)
    SELECT DB_NAME([database_id]) AS [Database Name], 
           [file_id], name, physical_name, type_desc, state_desc,
           is_percent_growth, growth,
           CONVERT(bigint, growth/128.0) AS [Growth in MB], 
           CONVERT(bigint, size/128.0) AS [Total Size in MB]
    FROM sys.master_files WITH (NOLOCK)
    WHERE [database_id] > 4 
    AND [database_id] <> 32767
    OR [database_id] = 2
    ORDER BY DB_NAME([database_id]) OPTION (RECOMPILE);
    
    -- Things to look at:
    -- Are data files and log files on different drives?
    -- Is everything on the C: drive?
    -- Is TempDB on dedicated drives?
    -- Is there only one TempDB data file?
    -- Are all of the TempDB data files the same size?
    -- Are there multiple data files for user databases?
    -- Is percent growth enabled for any files (which is bad)?
    
    
    -- Volume info for all LUNS that have database files on the current instance (Query 22) (Volume Info)
    SELECT DISTINCT vs.volume_mount_point, vs.file_system_type, 
    vs.logical_volume_name, CONVERT(DECIMAL(18,2),vs.total_bytes/1073741824.0) AS [Total Size (GB)],
    CONVERT(DECIMAL(18,2),vs.available_bytes/1073741824.0) AS [Available Size (GB)],  
    CAST(CAST(vs.available_bytes AS FLOAT)/ CAST(vs.total_bytes AS FLOAT) AS DECIMAL(18,2)) * 100 AS [Space Free %] 
    FROM sys.master_files AS f WITH (NOLOCK)
    CROSS APPLY sys.dm_os_volume_stats(f.database_id, f.[file_id]) AS vs OPTION (RECOMPILE);
    
    --Shows you the total and free space on the LUNs where you have database files
    
    
    -- Look for I/O requests taking longer than 15 seconds in the five most recent SQL Server Error Logs (Query 23) (IO Warnings)
    CREATE TABLE #IOWarningResults(LogDate datetime, ProcessInfo sysname, LogText nvarchar(1000));
    
        INSERT INTO #IOWarningResults 
        EXEC xp_readerrorlog 0, 1, N'taking longer than 15 seconds';
    
        INSERT INTO #IOWarningResults 
        EXEC xp_readerrorlog 1, 1, N'taking longer than 15 seconds';
    
        INSERT INTO #IOWarningResults 
        EXEC xp_readerrorlog 2, 1, N'taking longer than 15 seconds';
    
        INSERT INTO #IOWarningResults 
        EXEC xp_readerrorlog 3, 1, N'taking longer than 15 seconds';
    
        INSERT INTO #IOWarningResults 
        EXEC xp_readerrorlog 4, 1, N'taking longer than 15 seconds';
    
    SELECT LogDate, ProcessInfo, LogText
    FROM #IOWarningResults
    ORDER BY LogDate DESC;
    
    DROP TABLE #IOWarningResults;  
    
    -- Finding 15 second I/O warnings in the SQL Server Error Log is useful evidence of
    -- poor I/O performance (which might have many different causes)
    
    
    -- Drive level latency information (Query 24) (Drive Level Latency)
    -- Based on code from Jimmy May
    SELECT tab.[Drive], tab.volume_mount_point AS [Volume Mount Point], 
        CASE 
            WHEN num_of_reads = 0 THEN 0 
            ELSE (io_stall_read_ms/num_of_reads) 
        END AS [Read Latency],
        CASE 
            WHEN io_stall_write_ms = 0 THEN 0 
            ELSE (io_stall_write_ms/num_of_writes) 
        END AS [Write Latency],
        CASE 
            WHEN (num_of_reads = 0 AND num_of_writes = 0) THEN 0 
            ELSE (io_stall/(num_of_reads + num_of_writes)) 
        END AS [Overall Latency],
        CASE 
            WHEN num_of_reads = 0 THEN 0 
            ELSE (num_of_bytes_read/num_of_reads) 
        END AS [Avg Bytes/Read],
        CASE 
            WHEN io_stall_write_ms = 0 THEN 0 
            ELSE (num_of_bytes_written/num_of_writes) 
        END AS [Avg Bytes/Write],
        CASE 
            WHEN (num_of_reads = 0 AND num_of_writes = 0) THEN 0 
            ELSE ((num_of_bytes_read + num_of_bytes_written)/(num_of_reads + num_of_writes)) 
        END AS [Avg Bytes/Transfer]
    FROM (SELECT LEFT(UPPER(mf.physical_name), 2) AS Drive, SUM(num_of_reads) AS num_of_reads,
                 SUM(io_stall_read_ms) AS io_stall_read_ms, SUM(num_of_writes) AS num_of_writes,
                 SUM(io_stall_write_ms) AS io_stall_write_ms, SUM(num_of_bytes_read) AS num_of_bytes_read,
                 SUM(num_of_bytes_written) AS num_of_bytes_written, SUM(io_stall) AS io_stall, vs.volume_mount_point 
          FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS vfs
          INNER JOIN sys.master_files AS mf WITH (NOLOCK)
          ON vfs.database_id = mf.database_id AND vfs.file_id = mf.file_id
          CROSS APPLY sys.dm_os_volume_stats(mf.database_id, mf.[file_id]) AS vs 
          GROUP BY LEFT(UPPER(mf.physical_name), 2), vs.volume_mount_point) AS tab
    ORDER BY [Overall Latency] OPTION (RECOMPILE);
    
    -- Shows you the drive-level latency for reads and writes, in milliseconds
    -- Latency above 20-25ms is usually a problem
    
    
    -- Calculates average stalls per read, per write, and per total input/output for each database file  (Query 25) (IO Stalls by File)
    SELECT DB_NAME(fs.database_id) AS [Database Name], CAST(fs.io_stall_read_ms/(1.0 + fs.num_of_reads) AS NUMERIC(10,1)) AS [avg_read_stall_ms],
    CAST(fs.io_stall_write_ms/(1.0 + fs.num_of_writes) AS NUMERIC(10,1)) AS [avg_write_stall_ms],
    CAST((fs.io_stall_read_ms + fs.io_stall_write_ms)/(1.0 + fs.num_of_reads + fs.num_of_writes) AS NUMERIC(10,1)) AS [avg_io_stall_ms],
    CONVERT(DECIMAL(18,2), mf.size/128.0) AS [File Size (MB)], mf.physical_name, mf.type_desc, fs.io_stall_read_ms, fs.num_of_reads, 
    fs.io_stall_write_ms, fs.num_of_writes, fs.io_stall_read_ms + fs.io_stall_write_ms AS [io_stalls], fs.num_of_reads + fs.num_of_writes AS [total_io]
    FROM sys.dm_io_virtual_file_stats(null,null) AS fs
    INNER JOIN sys.master_files AS mf WITH (NOLOCK)
    ON fs.database_id = mf.database_id
    AND fs.[file_id] = mf.[file_id]
    ORDER BY avg_io_stall_ms DESC OPTION (RECOMPILE);
    
    -- Helps determine which database files on the entire instance have the most I/O bottlenecks
    -- This can help you decide whether certain LUNs are overloaded and whether you might
    -- want to move some files to a different location or perhaps improve your I/O performance
    
    
    -- Recovery model, log reuse wait description, log file size, log usage size  (Query 26) (Database Properties)
    -- and compatibility level for all databases on instance
    SELECT db.[name] AS [Database Name], db.recovery_model_desc AS [Recovery Model], db.state_desc, 
    db.log_reuse_wait_desc AS [Log Reuse Wait Description], 
    CONVERT(DECIMAL(18,2), ls.cntr_value/1024.0) AS [Log Size (MB)], CONVERT(DECIMAL(18,2), lu.cntr_value/1024.0) AS [Log Used (MB)],
    CAST(CAST(lu.cntr_value AS FLOAT) / CAST(ls.cntr_value AS FLOAT)AS DECIMAL(18,2)) * 100 AS [Log Used %], 
    db.[compatibility_level] AS [DB Compatibility Level], 
    db.page_verify_option_desc AS [Page Verify Option], db.is_auto_create_stats_on, db.is_auto_update_stats_on,
    db.is_auto_update_stats_async_on, db.is_parameterization_forced, 
    db.snapshot_isolation_state_desc, db.is_read_committed_snapshot_on,
    db.is_auto_close_on, db.is_auto_shrink_on, db.target_recovery_time_in_seconds, db.is_cdc_enabled
    FROM sys.databases AS db WITH (NOLOCK)
    INNER JOIN sys.dm_os_performance_counters AS lu WITH (NOLOCK)
    ON db.name = lu.instance_name
    INNER JOIN sys.dm_os_performance_counters AS ls WITH (NOLOCK)
    ON db.name = ls.instance_name
    WHERE lu.counter_name LIKE N'Log File(s) Used Size (KB)%' 
    AND ls.counter_name LIKE N'Log File(s) Size (KB)%'
    AND ls.cntr_value > 0 OPTION (RECOMPILE);
    
    -- Things to look at:
    -- How many databases are on the instance?
    -- What recovery models are they using?
    -- What is the log reuse wait description?
    -- How full are the transaction logs ?
    -- What compatibility level are the databases on? 
    -- What is the Page Verify Option? (should be CHECKSUM)
    -- Is Auto Update Statistics Asynchronously enabled?
    -- Make sure auto_shrink and auto_close are not enabled!
    
    
    
    -- Missing Indexes for all databases by Index Advantage  (Query 27) (Missing Indexes All Databases)
    SELECT CONVERT(decimal(18,2), user_seeks * avg_total_user_cost * (avg_user_impact * 0.01)) AS [index_advantage], 
    migs.last_user_seek, mid.[statement] AS [Database.Schema.Table],
    mid.equality_columns, mid.inequality_columns, mid.included_columns,
    migs.unique_compiles, migs.user_seeks, migs.avg_total_user_cost, migs.avg_user_impact
    FROM sys.dm_db_missing_index_group_stats AS migs WITH (NOLOCK)
    INNER JOIN sys.dm_db_missing_index_groups AS mig WITH (NOLOCK)
    ON migs.group_handle = mig.index_group_handle
    INNER JOIN sys.dm_db_missing_index_details AS mid WITH (NOLOCK)
    ON mig.index_handle = mid.index_handle
    ORDER BY index_advantage DESC OPTION (RECOMPILE);
    
    -- Getting missing index information for all of the databases on the instance is very useful
    -- Look at last user seek time, number of user seeks to help determine source and importance
    -- Also look at avg_user_impact and avg_total_user_cost to help determine importance
    -- SQL Server is overly eager to add included columns, so beware
    -- Do not just blindly add indexes that show up from this query!!!
    
    
    
    -- Get VLF Counts for all databases on the instance (Query 28) (VLF Counts)
    -- (adapted from Michelle Ufford) 
    CREATE TABLE #VLFInfo (RecoveryUnitID int, FileID  int,
                           FileSize bigint, StartOffset bigint,
                           FSeqNo      bigint, [Status]    bigint,
                           Parity      bigint, CreateLSN   numeric(38));
         
    CREATE TABLE #VLFCountResults(DatabaseName sysname, VLFCount int);
         
    EXEC sp_MSforeachdb N'Use [?]; 
    
                    INSERT INTO #VLFInfo 
                    EXEC sp_executesql N''DBCC LOGINFO([?])''; 
         
                    INSERT INTO #VLFCountResults 
                    SELECT DB_NAME(), COUNT(*) 
                    FROM #VLFInfo; 
    
                    TRUNCATE TABLE #VLFInfo;'
         
    SELECT DatabaseName, VLFCount  
    FROM #VLFCountResults
    ORDER BY VLFCount DESC;
         
    DROP TABLE #VLFInfo;
    DROP TABLE #VLFCountResults;
    
    -- High VLF counts can affect write performance 
    -- and they can make database restores and recovery take much longer
    -- Try to keep your VLF counts under 200 in most cases
    
    
    
    -- Get CPU utilization by database (Query 29) (CPU Usage by Database)
    WITH DB_CPU_Stats
    AS
    (SELECT pa.DatabaseID, DB_Name(pa.DatabaseID) AS [Database Name], SUM(qs.total_worker_time/1000) AS [CPU_Time_Ms]
     FROM sys.dm_exec_query_stats AS qs WITH (NOLOCK)
     CROSS APPLY (SELECT CONVERT(int, value) AS [DatabaseID] 
                  FROM sys.dm_exec_plan_attributes(qs.plan_handle)
                  WHERE attribute = N'dbid') AS pa
     GROUP BY DatabaseID)
    SELECT ROW_NUMBER() OVER(ORDER BY [CPU_Time_Ms] DESC) AS [CPU Rank],
           [Database Name], [CPU_Time_Ms] AS [CPU Time (ms)], 
           CAST([CPU_Time_Ms] * 1.0 / SUM([CPU_Time_Ms]) OVER() * 100.0 AS DECIMAL(5, 2)) AS [CPU Percent]
    FROM DB_CPU_Stats
    WHERE DatabaseID <> 32767 -- ResourceDB
    ORDER BY [CPU Rank] OPTION (RECOMPILE);
    
    -- Helps determine which database is using the most CPU resources on the instance
    
    
    -- Get I/O utilization by database (Query 30) (IO Usage By Database)
    WITH Aggregate_IO_Statistics
    AS
    (SELECT DB_NAME(database_id) AS [Database Name],
    CAST(SUM(num_of_bytes_read + num_of_bytes_written)/1048576 AS DECIMAL(12, 2)) AS io_in_mb
    FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS [DM_IO_STATS]
    GROUP BY database_id)
    SELECT ROW_NUMBER() OVER(ORDER BY io_in_mb DESC) AS [I/O Rank], [Database Name], io_in_mb AS [Total I/O (MB)],
           CAST(io_in_mb/ SUM(io_in_mb) OVER() * 100.0 AS DECIMAL(5,2)) AS [I/O Percent]
    FROM Aggregate_IO_Statistics
    ORDER BY [I/O Rank] OPTION (RECOMPILE);
    
    -- Helps determine which database is using the most I/O resources on the instance
    
    
    -- Get total buffer usage by database for current instance  (Query 31) (Total Buffer Usage by Database)
    -- This make take some time to run on a busy instance
    WITH AggregateBufferPoolUsage
    AS
    (SELECT DB_NAME(database_id) AS [Database Name],
    CAST(COUNT(*) * 8/1024.0 AS DECIMAL (10,2))  AS [CachedSize]
    FROM sys.dm_os_buffer_descriptors WITH (NOLOCK)
    WHERE database_id <> 32767 -- ResourceDB
    GROUP BY DB_NAME(database_id))
    SELECT ROW_NUMBER() OVER(ORDER BY CachedSize DESC) AS [Buffer Pool Rank], [Database Name], CachedSize AS [Cached Size (MB)],
           CAST(CachedSize / SUM(CachedSize) OVER() * 100.0 AS DECIMAL(5,2)) AS [Buffer Pool Percent]
    FROM AggregateBufferPoolUsage
    ORDER BY [Buffer Pool Rank] OPTION (RECOMPILE);
    
    -- Tells you how much memory (in the buffer pool) 
    -- is being used by each database on the instance
    
    
    -- Clear Wait Stats with this command
    -- DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);
    
    -- Isolate top waits for server instance since last restart or wait statistics clear  (Query 32) (Top Waits)
    WITH [Waits] 
    AS (SELECT wait_type, wait_time_ms/ 1000.0 AS [WaitS],
              (wait_time_ms - signal_wait_time_ms) / 1000.0 AS [ResourceS],
               signal_wait_time_ms / 1000.0 AS [SignalS],
               waiting_tasks_count AS [WaitCount],
               100.0 *  wait_time_ms / SUM (wait_time_ms) OVER() AS [Percentage],
               ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS [RowNum]
        FROM sys.dm_os_wait_stats WITH (NOLOCK)
        WHERE [wait_type] NOT IN (
            N'BROKER_EVENTHANDLER', N'BROKER_RECEIVE_WAITFOR', N'BROKER_TASK_STOP',
            N'BROKER_TO_FLUSH', N'BROKER_TRANSMITTER', N'CHECKPOINT_QUEUE',
            N'CHKPT', N'CLR_AUTO_EVENT', N'CLR_MANUAL_EVENT', N'CLR_SEMAPHORE',
            N'DBMIRROR_DBM_EVENT', N'DBMIRROR_EVENTS_QUEUE', N'DBMIRROR_WORKER_QUEUE',
            N'DBMIRRORING_CMD', N'DIRTY_PAGE_POLL', N'DISPATCHER_QUEUE_SEMAPHORE',
            N'EXECSYNC', N'FSAGENT', N'FT_IFTS_SCHEDULER_IDLE_WAIT', N'FT_IFTSHC_MUTEX',
            N'HADR_CLUSAPI_CALL', N'HADR_FILESTREAM_IOMGR_IOCOMPLETION', N'HADR_LOGCAPTURE_WAIT', 
            N'HADR_NOTIFICATION_DEQUEUE', N'HADR_TIMER_TASK', N'HADR_WORK_QUEUE',
            N'KSOURCE_WAKEUP', N'LAZYWRITER_SLEEP', N'LOGMGR_QUEUE', N'ONDEMAND_TASK_QUEUE',
            N'PWAIT_ALL_COMPONENTS_INITIALIZED', N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP',
            N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP', N'REQUEST_FOR_DEADLOCK_SEARCH',
            N'RESOURCE_QUEUE', N'SERVER_IDLE_CHECK', N'SLEEP_BPOOL_FLUSH', N'SLEEP_DBSTARTUP',
            N'SLEEP_DCOMSTARTUP', N'SLEEP_MASTERDBREADY', N'SLEEP_MASTERMDREADY',
            N'SLEEP_MASTERUPGRADED', N'SLEEP_MSDBSTARTUP', N'SLEEP_SYSTEMTASK', N'SLEEP_TASK',
            N'SLEEP_TEMPDBSTARTUP', N'SNI_HTTP_ACCEPT', N'SP_SERVER_DIAGNOSTICS_SLEEP',
            N'SQLTRACE_BUFFER_FLUSH', N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP', N'SQLTRACE_WAIT_ENTRIES',
            N'WAIT_FOR_RESULTS', N'WAITFOR', N'WAITFOR_TASKSHUTDOWN', N'WAIT_XTP_HOST_WAIT',
            N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG', N'WAIT_XTP_CKPT_CLOSE', N'XE_DISPATCHER_JOIN',
            N'XE_DISPATCHER_WAIT', N'XE_TIMER_EVENT')
        AND waiting_tasks_count > 0)
    SELECT
        MAX (W1.wait_type) AS [WaitType],
        CAST (MAX (W1.WaitS) AS DECIMAL (16,2)) AS [Wait_Sec],
        CAST (MAX (W1.ResourceS) AS DECIMAL (16,2)) AS [Resource_Sec],
        CAST (MAX (W1.SignalS) AS DECIMAL (16,2)) AS [Signal_Sec],
        MAX (W1.WaitCount) AS [Wait Count],
        CAST (MAX (W1.Percentage) AS DECIMAL (5,2)) AS [Wait Percentage],
        CAST ((MAX (W1.WaitS) / MAX (W1.WaitCount)) AS DECIMAL (16,4)) AS [AvgWait_Sec],
        CAST ((MAX (W1.ResourceS) / MAX (W1.WaitCount)) AS DECIMAL (16,4)) AS [AvgRes_Sec],
        CAST ((MAX (W1.SignalS) / MAX (W1.WaitCount)) AS DECIMAL (16,4)) AS [AvgSig_Sec]
    FROM Waits AS W1
    INNER JOIN Waits AS W2
    ON W2.RowNum <= W1.RowNum
    GROUP BY W1.RowNum
    HAVING SUM (W2.Percentage) - MAX (W1.Percentage) < 99 -- percentage threshold
    OPTION (RECOMPILE);
    
    -- Cumulative wait stats are not as useful on an idle instance that is not under load or performance pressure
    
    -- The SQL Server Wait Type Repository
    -- http://blogs.msdn.com/b/psssql/archive/2009/11/03/the-sql-server-wait-type-repository.aspx
    
    -- Wait statistics, or please tell me where it hurts
    -- http://www.sqlskills.com/blogs/paul/wait-statistics-or-please-tell-me-where-it-hurts/
    
    -- SQL Server 2005 Performance Tuning using the Waits and Queues
    -- http://technet.microsoft.com/en-us/library/cc966413.aspx
    
    -- sys.dm_os_wait_stats (Transact-SQL)
    -- http://msdn.microsoft.com/en-us/library/ms179984(v=sql.120).aspx
    
    
    
    -- Signal Waits for instance  (Query 33) (Signal Waits)
    SELECT CAST(100.0 * SUM(signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [% Signal (CPU) Waits],
    CAST(100.0 * SUM(wait_time_ms - signal_wait_time_ms) / SUM (wait_time_ms) AS NUMERIC(20,2)) AS [% Resource Waits]
    FROM sys.dm_os_wait_stats WITH (NOLOCK)
    WHERE wait_type NOT IN (
            N'BROKER_EVENTHANDLER', N'BROKER_RECEIVE_WAITFOR', N'BROKER_TASK_STOP',
            N'BROKER_TO_FLUSH', N'BROKER_TRANSMITTER', N'CHECKPOINT_QUEUE',
            N'CHKPT', N'CLR_AUTO_EVENT', N'CLR_MANUAL_EVENT', N'CLR_SEMAPHORE',
            N'DBMIRROR_DBM_EVENT', N'DBMIRROR_EVENTS_QUEUE', N'DBMIRROR_WORKER_QUEUE',
            N'DBMIRRORING_CMD', N'DIRTY_PAGE_POLL', N'DISPATCHER_QUEUE_SEMAPHORE',
            N'EXECSYNC', N'FSAGENT', N'FT_IFTS_SCHEDULER_IDLE_WAIT', N'FT_IFTSHC_MUTEX',
            N'HADR_CLUSAPI_CALL', N'HADR_FILESTREAM_IOMGR_IOCOMPLETION', N'HADR_LOGCAPTURE_WAIT', 
            N'HADR_NOTIFICATION_DEQUEUE', N'HADR_TIMER_TASK', N'HADR_WORK_QUEUE',
            N'KSOURCE_WAKEUP', N'LAZYWRITER_SLEEP', N'LOGMGR_QUEUE', N'ONDEMAND_TASK_QUEUE',
            N'PWAIT_ALL_COMPONENTS_INITIALIZED', N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP',
            N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP', N'REQUEST_FOR_DEADLOCK_SEARCH',
            N'RESOURCE_QUEUE', N'SERVER_IDLE_CHECK', N'SLEEP_BPOOL_FLUSH', N'SLEEP_DBSTARTUP',
            N'SLEEP_DCOMSTARTUP', N'SLEEP_MASTERDBREADY', N'SLEEP_MASTERMDREADY',
            N'SLEEP_MASTERUPGRADED', N'SLEEP_MSDBSTARTUP', N'SLEEP_SYSTEMTASK', N'SLEEP_TASK',
            N'SLEEP_TEMPDBSTARTUP', N'SNI_HTTP_ACCEPT', N'SP_SERVER_DIAGNOSTICS_SLEEP',
            N'SQLTRACE_BUFFER_FLUSH', N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP', N'SQLTRACE_WAIT_ENTRIES',
            N'WAIT_FOR_RESULTS', N'WAITFOR', N'WAITFOR_TASKSHUTDOWN', N'WAIT_XTP_HOST_WAIT',
            N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG', N'WAIT_XTP_CKPT_CLOSE', N'XE_DISPATCHER_JOIN',
            N'XE_DISPATCHER_WAIT', N'XE_TIMER_EVENT') OPTION (RECOMPILE);
    
    -- Signal Waits above 10-15% is usually a confirming sign of CPU pressure
    -- Cumulative wait stats are not as useful on an idle instance that is not under load or performance pressure
    -- Resource waits are non-CPU related waits
    
    
    --  Get logins that are connected and how many sessions they have (Query 34) (Connection Counts)
    SELECT login_name, [program_name], COUNT(session_id) AS [session_count] 
    FROM sys.dm_exec_sessions WITH (NOLOCK)
    GROUP BY login_name, [program_name]
    ORDER BY COUNT(session_id) DESC OPTION (RECOMPILE);
    
    -- This can help characterize your workload and
    -- determine whether you are seeing a normal level of activity
    
    
    -- Get a count of SQL connections by IP address (Query 35) (Connection Counts by IP Address)
    SELECT ec.client_net_address, es.[program_name], es.[host_name], es.login_name, 
    COUNT(ec.session_id) AS [connection count] 
    FROM sys.dm_exec_sessions AS es WITH (NOLOCK) 
    INNER JOIN sys.dm_exec_connections AS ec WITH (NOLOCK) 
    ON es.session_id = ec.session_id 
    GROUP BY ec.client_net_address, es.[program_name], es.[host_name], es.login_name  
    ORDER BY ec.client_net_address, es.[program_name] OPTION (RECOMPILE);
    
    -- This helps you figure where your database load is coming from
    -- and verifies connectivity from other machines
    
    
    -- Get Average Task Counts (run multiple times)  (Query 36) (Avg Task Counts)
    SELECT AVG(current_tasks_count) AS [Avg Task Count], 
    AVG(runnable_tasks_count) AS [Avg Runnable Task Count],
    AVG(pending_disk_io_count) AS [Avg Pending DiskIO Count]
    FROM sys.dm_os_schedulers WITH (NOLOCK)
    WHERE scheduler_id < 255 OPTION (RECOMPILE);
    
    -- Sustained values above 10 suggest further investigation in that area
    -- High Avg Task Counts are often caused by blocking/deadlocking or other resource contention
    
    -- Sustained values above 1 suggest further investigation in that area
    -- High Avg Runnable Task Counts are a good sign of CPU pressure
    -- High Avg Pending DiskIO Counts are a sign of disk pressure
    
    
    -- Get CPU Utilization History for last 256 minutes (in one minute intervals)  (Query 37) (CPU Utilization History)
    -- This version works with SQL Server 2012
    DECLARE @ts_now bigint = (SELECT cpu_ticks/(cpu_ticks/ms_ticks) FROM sys.dm_os_sys_info WITH (NOLOCK)); 
    
    SELECT TOP(256) SQLProcessUtilization AS [SQL Server Process CPU Utilization], 
                   SystemIdle AS [System Idle Process], 
                   100 - SystemIdle - SQLProcessUtilization AS [Other Process CPU Utilization], 
                   DATEADD(ms, -1 * (@ts_now - [timestamp]), GETDATE()) AS [Event Time] 
    FROM (SELECT record.value('(./Record/@id)[1]', 'int') AS record_id, 
                record.value('(./Record/SchedulerMonitorEvent/SystemHealth/SystemIdle)[1]', 'int') 
                AS [SystemIdle], 
                record.value('(./Record/SchedulerMonitorEvent/SystemHealth/ProcessUtilization)[1]', 'int') 
                AS [SQLProcessUtilization], [timestamp] 
          FROM (SELECT [timestamp], CONVERT(xml, record) AS [record] 
                FROM sys.dm_os_ring_buffers WITH (NOLOCK)
                WHERE ring_buffer_type = N'RING_BUFFER_SCHEDULER_MONITOR' 
                AND record LIKE N'%<SystemHealth>%') AS x) AS y 
    ORDER BY record_id DESC OPTION (RECOMPILE);
    
    -- Look at the trend over the entire period. 
    -- Also look at high sustained Other Process CPU Utilization values
    
    
    
    -- Get top total worker time queries for entire instance (Query 38) (Top Worker Time Queries)
    SELECT TOP(50) DB_NAME(t.[dbid]) AS [Database Name], LEFT(t.[text], 255) AS [Short Query Text],  
    qs.total_worker_time AS [Total Worker Time], qs.min_worker_time AS [Min Worker Time],
    qs.total_worker_time/qs.execution_count AS [Avg Worker Time], 
    qs.max_worker_time AS [Max Worker Time], qs.execution_count AS [Execution Count], 
    qs.total_elapsed_time/qs.execution_count AS [Avg Elapsed Time], 
    qs.total_logical_reads/qs.execution_count AS [Avg Logical Reads], 
    qs.total_physical_reads/qs.execution_count AS [Avg Physical Reads], qs.creation_time AS [Creation Time]
    --, t.[text] AS [Query Text], qp.query_plan AS [Query Plan] -- uncomment out these columns if not copying results to Excel
    FROM sys.dm_exec_query_stats AS qs WITH (NOLOCK)
    CROSS APPLY sys.dm_exec_sql_text(plan_handle) AS t 
    CROSS APPLY sys.dm_exec_query_plan(plan_handle) AS qp 
    ORDER BY qs.total_worker_time DESC OPTION (RECOMPILE);
    
    
    -- Helps you find the most expensive queries from a CPU perspective across the entire instance
    
    
    -- Good basic information about OS memory amounts and state  (Query 39) (System Memory)
    SELECT total_physical_memory_kb/1024 AS [Physical Memory (MB)], 
           available_physical_memory_kb/1024 AS [Available Memory (MB)], 
           total_page_file_kb/1024 AS [Total Page File (MB)], 
           available_page_file_kb/1024 AS [Available Page File (MB)], 
           system_cache_kb/1024 AS [System Cache (MB)],
           system_memory_state_desc AS [System Memory State]
    FROM sys.dm_os_sys_memory WITH (NOLOCK) OPTION (RECOMPILE);
    
    -- You want to see "Available physical memory is high"
    -- This indicates that you are not under external memory pressure
    
    
    -- SQL Server Process Address space info  (Query 40) (Process Memory)
    -- (shows whether locked pages is enabled, among other things)
    SELECT physical_memory_in_use_kb/1024 AS [SQL Server Memory Usage (MB)],
           large_page_allocations_kb, locked_page_allocations_kb, page_fault_count, 
           memory_utilization_percentage, available_commit_limit_kb, 
           process_physical_memory_low, process_virtual_memory_low
    FROM sys.dm_os_process_memory WITH (NOLOCK) OPTION (RECOMPILE);
    
    -- You want to see 0 for process_physical_memory_low
    -- You want to see 0 for process_virtual_memory_low
    -- This indicates that you are not under internal memory pressure
    
    
    -- Page Life Expectancy (PLE) value for each NUMA node in current instance  (Query 41) (PLE by NUMA Node)
    SELECT @@SERVERNAME AS [Server Name], [object_name], instance_name, cntr_value AS [Page Life Expectancy]
    FROM sys.dm_os_performance_counters WITH (NOLOCK)
    WHERE [object_name] LIKE N'%Buffer Node%' -- Handles named instances
    AND counter_name = N'Page life expectancy' OPTION (RECOMPILE);
    
    -- PLE is a good measurement of memory pressure.
    -- Higher PLE is better. Watch the trend over time, not the absolute value.
    -- This will only return one row for non-NUMA systems.
    
    
    -- Memory Grants Pending value for current instance  (Query 42) (Memory Grants Pending)
    SELECT @@SERVERNAME AS [Server Name], [object_name], cntr_value AS [Memory Grants Pending]                                                                                                       
    FROM sys.dm_os_performance_counters WITH (NOLOCK)
    WHERE [object_name] LIKE N'%Memory Manager%' -- Handles named instances
    AND counter_name = N'Memory Grants Pending' OPTION (RECOMPILE);
    
    -- Memory Grants Pending above zero for a sustained period is a very strong indicator of memory pressure
    
    
    -- Memory Clerk Usage for instance  (Query 43) (Memory Clerk Usage)
    -- Look for high value for CACHESTORE_SQLCP (Ad-hoc query plans)
    SELECT TOP(10) mc.[type] AS [Memory Clerk Type], 
           CAST((SUM(mc.pages_kb)/1024.0) AS DECIMAL (15,2)) AS [Memory Usage (MB)] 
    FROM sys.dm_os_memory_clerks AS mc WITH (NOLOCK)
    GROUP BY mc.[type]  
    ORDER BY SUM(mc.pages_kb) DESC OPTION (RECOMPILE);
    
    -- MEMORYCLERK_SQLBUFFERPOOL is new for SQL Server 2012. It should be your highest consumer of memory
    
    -- CACHESTORE_SQLCP  SQL Plans         
    -- These are cached SQL statements or batches that aren't in stored procedures, functions and triggers
    -- Watch out for high values for CACHESTORE_SQLCP
    
    -- CACHESTORE_OBJCP  Object Plans      
    -- These are compiled plans for stored procedures, functions and triggers
    
    
    
    -- Find single-use, ad-hoc and prepared queries that are bloating the plan cache  (Query 44) (Ad hoc Queries)
    SELECT TOP(50) [text] AS [QueryText], cp.cacheobjtype, cp.objtype, cp.size_in_bytes/1024 AS [Plan Size in KB]
    FROM sys.dm_exec_cached_plans AS cp WITH (NOLOCK)
    CROSS APPLY sys.dm_exec_sql_text(plan_handle) 
    WHERE cp.cacheobjtype = N'Compiled Plan' 
    AND cp.objtype IN (N'Adhoc', N'Prepared') 
    AND cp.usecounts = 1
    ORDER BY cp.size_in_bytes DESC OPTION (RECOMPILE);
    
    -- Gives you the text, type and size of single-use ad-hoc and prepared queries that waste space in the plan cache
    -- Enabling 'optimize for ad hoc workloads' for the instance can help (SQL Server 2008 and above only)
    -- Running DBCC FREESYSTEMCACHE ('SQL Plans') periodically may be required to better control this.
    -- Enabling forced parameterization for the database can help, but test first!
    
    
    -- Database specific queries *****************************************************************
    
    -- **** Switch to a user database *****
    USE YourDatabaseName; -- make sure to change to an actual database on your instance
    GO
    
    -- Individual File Sizes and space available for current database  (Query 45) (File Sizes and Space)
    SELECT f.name AS [File Name] , f.physical_name AS [Physical Name], 
    CAST((f.size/128.0) AS DECIMAL(15,2)) AS [Total Size in MB],
    CAST(f.size/128.0 - CAST(FILEPROPERTY(f.name, 'SpaceUsed') AS int)/128.0 AS DECIMAL(15,2)) 
    AS [Available Space In MB], [file_id], fg.name AS [Filegroup Name]
    FROM sys.database_files AS f WITH (NOLOCK) 
    LEFT OUTER JOIN sys.data_spaces AS fg WITH (NOLOCK) 
    ON f.data_space_id = fg.data_space_id OPTION (RECOMPILE);
    
    -- Look at how large and how full the files are and where they are located
    -- Make sure the transaction log is not full!!
    
    
    
    -- I/O Statistics by file for the current database  (Query 46) (IO Stats By File)
    SELECT DB_NAME(DB_ID()) AS [Database Name], df.name AS [Logical Name], vfs.[file_id], 
    df.physical_name AS [Physical Name], vfs.num_of_reads, vfs.num_of_writes, vfs.io_stall_read_ms, vfs.io_stall_write_ms,
    CAST(100. * vfs.io_stall_read_ms/(vfs.io_stall_read_ms + vfs.io_stall_write_ms) AS DECIMAL(10,1)) AS [IO Stall Reads Pct],
    CAST(100. * vfs.io_stall_write_ms/(vfs.io_stall_write_ms + vfs.io_stall_read_ms) AS DECIMAL(10,1)) AS [IO Stall Writes Pct],
    (vfs.num_of_reads + vfs.num_of_writes) AS [Writes + Reads], 
    CAST(vfs.num_of_bytes_read/1048576.0 AS DECIMAL(10, 2)) AS [MB Read], 
    CAST(vfs.num_of_bytes_written/1048576.0 AS DECIMAL(10, 2)) AS [MB Written],
    CAST(100. * vfs.num_of_reads/(vfs.num_of_reads + vfs.num_of_writes) AS DECIMAL(10,1)) AS [# Reads Pct],
    CAST(100. * vfs.num_of_writes/(vfs.num_of_reads + vfs.num_of_writes) AS DECIMAL(10,1)) AS [# Write Pct],
    CAST(100. * vfs.num_of_bytes_read/(vfs.num_of_bytes_read + vfs.num_of_bytes_written) AS DECIMAL(10,1)) AS [Read Bytes Pct],
    CAST(100. * vfs.num_of_bytes_written/(vfs.num_of_bytes_read + vfs.num_of_bytes_written) AS DECIMAL(10,1)) AS [Written Bytes Pct]
    FROM sys.dm_io_virtual_file_stats(DB_ID(), NULL) AS vfs
    INNER JOIN sys.database_files AS df WITH (NOLOCK)
    ON vfs.[file_id]= df.[file_id] OPTION (RECOMPILE);
    
    -- This helps you characterize your workload better from an I/O perspective for this database
    -- It helps you determine whether you has an OLTP or DW/DSS type of workload
    
    
    
    -- Top cached queries by Execution Count (SQL Server 2012)  (Query 47) (Query Execution Counts)
    SELECT TOP (100) qs.execution_count, qs.total_rows, qs.last_rows, qs.min_rows, qs.max_rows,
    qs.last_elapsed_time, qs.min_elapsed_time, qs.max_elapsed_time,
    total_worker_time, total_logical_reads, 
    SUBSTRING(qt.TEXT,qs.statement_start_offset/2 +1,
    (CASE WHEN qs.statement_end_offset = -1
                THEN LEN(CONVERT(NVARCHAR(MAX), qt.TEXT)) * 2
          ELSE qs.statement_end_offset END - qs.statement_start_offset)/2) AS query_text 
    FROM sys.dm_exec_query_stats AS qs WITH (NOLOCK)
    CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS qt
    WHERE qt.dbid = DB_ID()
    ORDER BY qs.execution_count DESC OPTION (RECOMPILE);
    
    -- Uses several new rows returned columns to help troubleshoot performance problems
    
    
    -- Top Cached SPs By Execution Count (SQL Server 2012)  (Query 48) (SP Execution Counts)
    SELECT TOP(100) p.name AS [SP Name], qs.execution_count,
    ISNULL(qs.execution_count/DATEDIFF(Minute, qs.cached_time, GETDATE()), 0) AS [Calls/Minute],
    qs.total_worker_time/qs.execution_count AS [AvgWorkerTime], qs.total_worker_time AS [TotalWorkerTime],  
    qs.total_elapsed_time, qs.total_elapsed_time/qs.execution_count AS [avg_elapsed_time],
    qs.cached_time
    FROM sys.procedures AS p WITH (NOLOCK)
    INNER JOIN sys.dm_exec_procedure_stats AS qs WITH (NOLOCK)
    ON p.[object_id] = qs.[object_id]
    WHERE qs.database_id = DB_ID()
    ORDER BY qs.execution_count DESC OPTION (RECOMPILE);
    
    -- Tells you which cached stored procedures are called the most often
    -- This helps you characterize and baseline your workload
    
    
    -- Top Cached SPs By Avg Elapsed Time (SQL Server 2012)  (Query 49) (SP Avg Elapsed Time)
    SELECT TOP(25) p.name AS [SP Name], qs.total_elapsed_time/qs.execution_count AS [avg_elapsed_time], 
    qs.total_elapsed_time, qs.execution_count, ISNULL(qs.execution_count/DATEDIFF(Minute, qs.cached_time, 
    GETDATE()), 0) AS [Calls/Minute], qs.total_worker_time/qs.execution_count AS [AvgWorkerTime], 
    qs.total_worker_time AS [TotalWorkerTime], qs.cached_time
    FROM sys.procedures AS p WITH (NOLOCK)
    INNER JOIN sys.dm_exec_procedure_stats AS qs WITH (NOLOCK)
    ON p.[object_id] = qs.[object_id]
    WHERE qs.database_id = DB_ID()
    ORDER BY avg_elapsed_time DESC OPTION (RECOMPILE);
    
    -- This helps you find long-running cached stored procedures that
    -- may be easy to optimize with standard query tuning techniques
    
    
    -- Top Cached SPs By Avg Elapsed Time with execution time variability (SQL Server 2012)  (Query 50) (SP Avg Elapsed Variable Time)
    SELECT TOP(25) p.name AS [SP Name], qs.execution_count, qs.min_elapsed_time,
    qs.total_elapsed_time/qs.execution_count AS [avg_elapsed_time],
    qs.max_elapsed_time, qs.last_elapsed_time,  qs.cached_time
    FROM sys.procedures AS p WITH (NOLOCK)
    INNER JOIN sys.dm_exec_procedure_stats AS qs WITH (NOLOCK)
    ON p.[object_id] = qs.[object_id]
    WHERE qs.database_id = DB_ID()
    ORDER BY avg_elapsed_time DESC OPTION (RECOMPILE);
    
    -- This gives you some interesting information about the variability in the
    -- execution time of your cached stored procedures, which is useful for tuning
    
    
    -- Top Cached SPs By Total Worker time (SQL Server 2012). Worker time relates to CPU cost  (Query 51) (SP Worker Time)
    SELECT TOP(25) p.name AS [SP Name], qs.total_worker_time AS [TotalWorkerTime], 
    qs.total_worker_time/qs.execution_count AS [AvgWorkerTime], qs.execution_count, 
    ISNULL(qs.execution_count/DATEDIFF(Minute, qs.cached_time, GETDATE()), 0) AS [Calls/Minute],
    qs.total_elapsed_time, qs.total_elapsed_time/qs.execution_count 
    AS [avg_elapsed_time], qs.cached_time
    FROM sys.procedures AS p WITH (NOLOCK)
    INNER JOIN sys.dm_exec_procedure_stats AS qs WITH (NOLOCK)
    ON p.[object_id] = qs.[object_id]
    WHERE qs.database_id = DB_ID()
    ORDER BY qs.total_worker_time DESC OPTION (RECOMPILE);
    
    -- This helps you find the most expensive cached stored procedures from a CPU perspective
    -- You should look at this if you see signs of CPU pressure
    
    
    -- Top Cached SPs By Total Logical Reads (SQL Server 2012). Logical reads relate to memory pressure  (Query 52) (SP Logical Reads)
    SELECT TOP(25) p.name AS [SP Name], qs.total_logical_reads AS [TotalLogicalReads], 
    qs.total_logical_reads/qs.execution_count AS [AvgLogicalReads],qs.execution_count, 
    ISNULL(qs.execution_count/DATEDIFF(Minute, qs.cached_time, GETDATE()), 0) AS [Calls/Minute], 
    qs.total_elapsed_time, qs.total_elapsed_time/qs.execution_count 
    AS [avg_elapsed_time], qs.cached_time
    FROM sys.procedures AS p WITH (NOLOCK)
    INNER JOIN sys.dm_exec_procedure_stats AS qs WITH (NOLOCK)
    ON p.[object_id] = qs.[object_id]
    WHERE qs.database_id = DB_ID()
    ORDER BY qs.total_logical_reads DESC OPTION (RECOMPILE);
    
    -- This helps you find the most expensive cached stored procedures from a memory perspective
    -- You should look at this if you see signs of memory pressure
    
    
    -- Top Cached SPs By Total Physical Reads (SQL Server 2012). Physical reads relate to disk I/O pressure  (Query 53) (SP Physical Reads)
    SELECT TOP(25) p.name AS [SP Name],qs.total_physical_reads AS [TotalPhysicalReads], 
    qs.total_physical_reads/qs.execution_count AS [AvgPhysicalReads], qs.execution_count, 
    qs.total_logical_reads,qs.total_elapsed_time, qs.total_elapsed_time/qs.execution_count 
    AS [avg_elapsed_time], qs.cached_time 
    FROM sys.procedures AS p WITH (NOLOCK)
    INNER JOIN sys.dm_exec_procedure_stats AS qs WITH (NOLOCK)
    ON p.[object_id] = qs.[object_id]
    WHERE qs.database_id = DB_ID()
    AND qs.total_physical_reads > 0
    ORDER BY qs.total_physical_reads DESC, qs.total_logical_reads DESC OPTION (RECOMPILE);
    
    -- This helps you find the most expensive cached stored procedures from a read I/O perspective
    -- You should look at this if you see signs of I/O pressure or of memory pressure
           
    -- Top Cached SPs By Total Logical Writes (SQL Server 2012)  (Query 54) (SP Logical Writes)
    -- Logical writes relate to both memory and disk I/O pressure 
    SELECT TOP(25) p.name AS [SP Name], qs.total_logical_writes AS [TotalLogicalWrites], 
    qs.total_logical_writes/qs.execution_count AS [AvgLogicalWrites], qs.execution_count,
    ISNULL(qs.execution_count/DATEDIFF(Minute, qs.cached_time, GETDATE()), 0) AS [Calls/Minute],
    qs.total_elapsed_time, qs.total_elapsed_time/qs.execution_count AS [avg_elapsed_time], 
    qs.cached_time
    FROM sys.procedures AS p WITH (NOLOCK)
    INNER JOIN sys.dm_exec_procedure_stats AS qs WITH (NOLOCK)
    ON p.[object_id] = qs.[object_id]
    WHERE qs.database_id = DB_ID()
    AND qs.total_logical_writes > 0
    ORDER BY qs.total_logical_writes DESC OPTION (RECOMPILE);
    
    -- This helps you find the most expensive cached stored procedures from a write I/O perspective
    -- You should look at this if you see signs of I/O pressure or of memory pressure
    
    
    -- Lists the top statements by average input/output usage for the current database  (Query 55) (Top IO Statements)
    SELECT TOP(50) OBJECT_NAME(qt.objectid, dbid) AS [SP Name],
    (qs.total_logical_reads + qs.total_logical_writes) /qs.execution_count AS [Avg IO], qs.execution_count AS [Execution Count],
    SUBSTRING(qt.[text],qs.statement_start_offset/2, 
        (CASE 
            WHEN qs.statement_end_offset = -1 
         THEN LEN(CONVERT(nvarchar(max), qt.[text])) * 2 
            ELSE qs.statement_end_offset 
         END - qs.statement_start_offset)/2) AS [Query Text]    
    FROM sys.dm_exec_query_stats AS qs WITH (NOLOCK)
    CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS qt
    WHERE qt.[dbid] = DB_ID()
    ORDER BY [Avg IO] DESC OPTION (RECOMPILE);
    
    -- Helps you find the most expensive statements for I/O by SP
    
    
    
    -- Possible Bad NC Indexes (writes > reads)  (Query 56) (Bad NC Indexes)
    SELECT OBJECT_NAME(s.[object_id]) AS [Table Name], i.name AS [Index Name], i.index_id, 
    i.is_disabled, i.is_hypothetical, i.has_filter, i.fill_factor,
    user_updates AS [Total Writes], user_seeks + user_scans + user_lookups AS [Total Reads],
    user_updates - (user_seeks + user_scans + user_lookups) AS [Difference]
    FROM sys.dm_db_index_usage_stats AS s WITH (NOLOCK)
    INNER JOIN sys.indexes AS i WITH (NOLOCK)
    ON s.[object_id] = i.[object_id]
    AND i.index_id = s.index_id
    WHERE OBJECTPROPERTY(s.[object_id],'IsUserTable') = 1
    AND s.database_id = DB_ID()
    AND user_updates > (user_seeks + user_scans + user_lookups)
    AND i.index_id > 1
    ORDER BY [Difference] DESC, [Total Writes] DESC, [Total Reads] ASC OPTION (RECOMPILE);
    
    -- Look for indexes with high numbers of writes and zero or very low numbers of reads
    -- Consider your complete workload, and how long your instance has been running
    -- Investigate further before dropping an index!
    
    
    -- Missing Indexes for current database by Index Advantage  (Query 57) (Missing Indexes)
    SELECT DISTINCT CONVERT(decimal(18,2), user_seeks * avg_total_user_cost * (avg_user_impact * 0.01)) AS [index_advantage], 
    migs.last_user_seek, mid.[statement] AS [Database.Schema.Table],
    mid.equality_columns, mid.inequality_columns, mid.included_columns,
    migs.unique_compiles, migs.user_seeks, migs.avg_total_user_cost, migs.avg_user_impact,
    OBJECT_NAME(mid.[object_id]) AS [Table Name], p.rows AS [Table Rows]
    FROM sys.dm_db_missing_index_group_stats AS migs WITH (NOLOCK)
    INNER JOIN sys.dm_db_missing_index_groups AS mig WITH (NOLOCK)
    ON migs.group_handle = mig.index_group_handle
    INNER JOIN sys.dm_db_missing_index_details AS mid WITH (NOLOCK)
    ON mig.index_handle = mid.index_handle
    INNER JOIN sys.partitions AS p WITH (NOLOCK)
    ON p.[object_id] = mid.[object_id]
    WHERE mid.database_id = DB_ID() 
    ORDER BY index_advantage DESC OPTION (RECOMPILE);
    
    -- Look at index advantage, last user seek time, number of user seeks to help determine source and importance
    -- SQL Server is overly eager to add included columns, so beware
    -- Do not just blindly add indexes that show up from this query!!!
    
    
    -- Find missing index warnings for cached plans in the current database  (Query 58) (Missing Index Warnings)
    -- Note: This query could take some time on a busy instance
    SELECT TOP(25) OBJECT_NAME(objectid) AS [ObjectName], 
                   query_plan, cp.objtype, cp.usecounts
    FROM sys.dm_exec_cached_plans AS cp WITH (NOLOCK)
    CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) AS qp
    WHERE CAST(query_plan AS NVARCHAR(MAX)) LIKE N'%MissingIndex%'
    AND dbid = DB_ID()
    ORDER BY cp.usecounts DESC OPTION (RECOMPILE);
    
    -- Helps you connect missing indexes to specific stored procedures or queries
    -- This can help you decide whether to add them or not
    
    
    -- Breaks down buffers used by current database by object (table, index) in the buffer cache  (Query 59) (Buffer Usage)
    -- Note: This query could take some time on a busy instance
    SELECT OBJECT_NAME(p.[object_id]) AS [Object Name], p.index_id, 
    CAST(COUNT(*)/128.0 AS DECIMAL(10, 2)) AS [Buffer size(MB)],  
    COUNT(*) AS [BufferCount], p.Rows AS [Row Count],
    p.data_compression_desc AS [Compression Type]
    FROM sys.allocation_units AS a WITH (NOLOCK)
    INNER JOIN sys.dm_os_buffer_descriptors AS b WITH (NOLOCK)
    ON a.allocation_unit_id = b.allocation_unit_id
    INNER JOIN sys.partitions AS p WITH (NOLOCK)
    ON a.container_id = p.hobt_id
    WHERE b.database_id = CONVERT(int,DB_ID())
    AND p.[object_id] > 100
    GROUP BY p.[object_id], p.index_id, p.data_compression_desc, p.[Rows]
    ORDER BY [BufferCount] DESC OPTION (RECOMPILE);
    
    -- Tells you what tables and indexes are using the most memory in the buffer cache
    -- It can help identify possible candidates for data compression
    
    
    -- Get Table names, row counts, and compression status for clustered index or heap  (Query 60) (Table Sizes)
    SELECT OBJECT_NAME(object_id) AS [ObjectName], 
    SUM(Rows) AS [RowCount], data_compression_desc AS [CompressionType]
    FROM sys.partitions WITH (NOLOCK)
    WHERE index_id < 2 --ignore the partitions from the non-clustered index if any
    AND OBJECT_NAME(object_id) NOT LIKE N'sys%'
    AND OBJECT_NAME(object_id) NOT LIKE N'queue_%' 
    AND OBJECT_NAME(object_id) NOT LIKE N'filestream_tombstone%' 
    AND OBJECT_NAME(object_id) NOT LIKE N'fulltext%'
    AND OBJECT_NAME(object_id) NOT LIKE N'ifts_comp_fragment%'
    AND OBJECT_NAME(object_id) NOT LIKE N'filetable_updates%'
    AND OBJECT_NAME(object_id) NOT LIKE N'xml_index_nodes%'
    GROUP BY object_id, data_compression_desc
    ORDER BY SUM(Rows) DESC OPTION (RECOMPILE);
    
    -- Gives you an idea of table sizes, and possible data compression opportunities
    
    
    
    -- Get some key table properties (Query 61) (Table Properties)
    SELECT [name], create_date, lock_on_bulk_load, is_replicated, has_replication_filter, 
           is_tracked_by_cdc, lock_escalation_desc
    FROM sys.tables WITH (NOLOCK) 
    ORDER BY [name] OPTION (RECOMPILE);
    
    -- Gives you some good information about your tables
    
    
    -- Detect blocking (run multiple times)  (Query 62) (Detect Blocking)
    SELECT t1.resource_type AS [lock type], DB_NAME(resource_database_id) AS [database],
    t1.resource_associated_entity_id AS [blk object],t1.request_mode AS [lock req],  --- lock requested
    t1.request_session_id AS [waiter sid], t2.wait_duration_ms AS [wait time],       -- spid of waiter  
    (SELECT [text] FROM sys.dm_exec_requests AS r WITH (NOLOCK)                      -- get sql for waiter
    CROSS APPLY sys.dm_exec_sql_text(r.[sql_handle]) 
    WHERE r.session_id = t1.request_session_id) AS [waiter_batch],
    (SELECT SUBSTRING(qt.[text],r.statement_start_offset/2, 
        (CASE WHEN r.statement_end_offset = -1 
        THEN LEN(CONVERT(nvarchar(max), qt.[text])) * 2 
        ELSE r.statement_end_offset END - r.statement_start_offset)/2) 
    FROM sys.dm_exec_requests AS r WITH (NOLOCK)
    CROSS APPLY sys.dm_exec_sql_text(r.[sql_handle]) AS qt
    WHERE r.session_id = t1.request_session_id) AS [waiter_stmt],                    -- statement blocked
    t2.blocking_session_id AS [blocker sid],                                        -- spid of blocker
    (SELECT [text] FROM sys.sysprocesses AS p                                        -- get sql for blocker
    CROSS APPLY sys.dm_exec_sql_text(p.[sql_handle]) 
    WHERE p.spid = t2.blocking_session_id) AS [blocker_stmt]
    FROM sys.dm_tran_locks AS t1 WITH (NOLOCK)
    INNER JOIN sys.dm_os_waiting_tasks AS t2 WITH (NOLOCK)
    ON t1.lock_owner_address = t2.resource_address OPTION (RECOMPILE);
    
    -- Helps troubleshoot blocking and deadlocking issues
    -- The results will change from second to second on a busy system
    -- You should run this query multiple times when you see signs of blocking
    
    
    
    -- When were Statistics last updated on all indexes?  (Query 63) (Statistics Update)
    SELECT SCHEMA_NAME(o.Schema_ID) + N'.' + o.NAME AS [Object Name], o.type_desc AS [Object Type],
          i.name AS [Index Name], STATS_DATE(i.[object_id], i.index_id) AS [Statistics Date], 
          s.auto_created, s.no_recompute, s.user_created, s.is_temporary,
          st.row_count, st.used_page_count
    FROM sys.objects AS o WITH (NOLOCK)
    INNER JOIN sys.indexes AS i WITH (NOLOCK)
    ON o.[object_id] = i.[object_id]
    INNER JOIN sys.stats AS s WITH (NOLOCK)
    ON i.[object_id] = s.[object_id] 
    AND i.index_id = s.stats_id
    INNER JOIN sys.dm_db_partition_stats AS st WITH (NOLOCK)
    ON o.[object_id] = st.[object_id]
    AND i.[index_id] = st.[index_id]
    WHERE o.[type] IN ('U', 'V')
    AND st.row_count > 0
    ORDER BY STATS_DATE(i.[object_id], i.index_id) DESC OPTION (RECOMPILE);  
    
    -- Helps discover possible problems with out-of-date statistics
    -- Also gives you an idea which indexes are the most active
    
    
    -- Look at most frequently modified indexes and statistics (Query 64) (Volatile Indexes)
    SELECT o.name AS [Object Name], o.[object_id], o.type_desc, s.name AS [Statistics Name], 
           s.stats_id, s.no_recompute, s.auto_created, 
           sp.modification_counter, sp.rows, sp.rows_sampled, sp.last_updated
    FROM sys.objects AS o WITH (NOLOCK)
    INNER JOIN sys.stats AS s WITH (NOLOCK)
    ON s.object_id = o.object_id
    CROSS APPLY sys.dm_db_stats_properties(s.object_id, s.stats_id) AS sp
    WHERE o.type_desc NOT IN (N'SYSTEM_TABLE', N'INTERNAL_TABLE')
    AND sp.modification_counter > 0
    ORDER BY sp.modification_counter DESC, o.name OPTION (RECOMPILE);
    
    
    
    -- Get fragmentation info for all indexes above a certain size in the current database  (Query 65) (Index Fragmentation)
    -- Note: This query could take some time on a very large database
    SELECT DB_NAME(ps.database_id) AS [Database Name], OBJECT_NAME(ps.OBJECT_ID) AS [Object Name], 
    i.name AS [Index Name], ps.index_id, ps.index_type_desc, ps.avg_fragmentation_in_percent, 
    ps.fragment_count, ps.page_count, i.fill_factor, i.has_filter, i.filter_definition
    FROM sys.dm_db_index_physical_stats(DB_ID(),NULL, NULL, NULL , N'LIMITED') AS ps
    INNER JOIN sys.indexes AS i WITH (NOLOCK)
    ON ps.[object_id] = i.[object_id] 
    AND ps.index_id = i.index_id
    WHERE ps.database_id = DB_ID()
    AND ps.page_count > 2500
    ORDER BY ps.avg_fragmentation_in_percent DESC OPTION (RECOMPILE);
    
    -- Helps determine whether you have framentation in your relational indexes
    -- and how effective your index maintenance strategy is
    
    
    --- Index Read/Write stats (all tables in current DB) ordered by Reads  (Query 66) (Overall Index Usage - Reads)
    SELECT OBJECT_NAME(s.[object_id]) AS [ObjectName], i.name AS [IndexName], i.index_id,
           user_seeks + user_scans + user_lookups AS [Reads], s.user_updates AS [Writes],  
           i.type_desc AS [IndexType], i.fill_factor AS [FillFactor], i.has_filter, i.filter_definition, 
           s.last_user_scan, s.last_user_lookup, s.last_user_seek
    FROM sys.dm_db_index_usage_stats AS s WITH (NOLOCK)
    INNER JOIN sys.indexes AS i WITH (NOLOCK)
    ON s.[object_id] = i.[object_id]
    WHERE OBJECTPROPERTY(s.[object_id],'IsUserTable') = 1
    AND i.index_id = s.index_id
    AND s.database_id = DB_ID()
    ORDER BY user_seeks + user_scans + user_lookups DESC OPTION (RECOMPILE); -- Order by reads
    
    
    -- Show which indexes in the current database are most active for Reads
    
    
    --- Index Read/Write stats (all tables in current DB) ordered by Writes  (Query 67) (Overall Index Usage - Writes)
    SELECT OBJECT_NAME(s.[object_id]) AS [ObjectName], i.name AS [IndexName], i.index_id,
           s.user_updates AS [Writes], user_seeks + user_scans + user_lookups AS [Reads], 
           i.type_desc AS [IndexType], i.fill_factor AS [FillFactor], i.has_filter, i.filter_definition,
           s.last_system_update, s.last_user_update
    FROM sys.dm_db_index_usage_stats AS s WITH (NOLOCK)
    INNER JOIN sys.indexes AS i WITH (NOLOCK)
    ON s.[object_id] = i.[object_id]
    WHERE OBJECTPROPERTY(s.[object_id],'IsUserTable') = 1
    AND i.index_id = s.index_id
    AND s.database_id = DB_ID()
    ORDER BY s.user_updates DESC OPTION (RECOMPILE);                         -- Order by writes
    
    -- Show which indexes in the current database are most active for Writes
    
    
    -- Get lock waits for current database (Query 68) (Lock Waits)
    SELECT o.name AS [table_name], i.name AS [index_name], ios.index_id, ios.partition_number,
            SUM(ios.row_lock_wait_count) AS [total_row_lock_waits], 
            SUM(ios.row_lock_wait_in_ms) AS [total_row_lock_wait_in_ms],
            SUM(ios.page_lock_wait_count) AS [total_page_lock_waits],
            SUM(ios.page_lock_wait_in_ms) AS [total_page_lock_wait_in_ms],
            SUM(ios.page_lock_wait_in_ms)+ SUM(row_lock_wait_in_ms) AS [total_lock_wait_in_ms]
    FROM sys.dm_db_index_operational_stats(DB_ID(), NULL, NULL, NULL) AS ios
    INNER JOIN sys.objects AS o WITH (NOLOCK)
    ON ios.[object_id] = o.[object_id]
    INNER JOIN sys.indexes AS i WITH (NOLOCK)
    ON ios.[object_id] = i.[object_id] 
    AND ios.index_id = i.index_id
    WHERE o.[object_id] > 100
    GROUP BY o.name, i.name, ios.index_id, ios.partition_number
    HAVING SUM(ios.page_lock_wait_in_ms)+ SUM(row_lock_wait_in_ms) > 0
    ORDER BY total_lock_wait_in_ms DESC OPTION (RECOMPILE);
    
    -- This query is helpful for troubleshooting blocking and deadlocking issues
    
    
    -- Look at recent Full backups for the current database (Query 69) (Recent Full Backups)
    SELECT TOP (30) bs.machine_name, bs.server_name, bs.database_name AS [Database Name], bs.recovery_model,
    CONVERT (BIGINT, bs.backup_size / 1048576 ) AS [Uncompressed Backup Size (MB)],
    CONVERT (BIGINT, bs.compressed_backup_size / 1048576 ) AS [Compressed Backup Size (MB)],
    CONVERT (NUMERIC (20,2), (CONVERT (FLOAT, bs.backup_size) /
    CONVERT (FLOAT, bs.compressed_backup_size))) AS [Compression Ratio], 
    DATEDIFF (SECOND, bs.backup_start_date, bs.backup_finish_date) AS [Backup Elapsed Time (sec)],
    bs.backup_finish_date AS [Backup Finish Date]
    FROM msdb.dbo.backupset AS bs WITH (NOLOCK)
    WHERE DATEDIFF (SECOND, bs.backup_start_date, bs.backup_finish_date) > 0 
    AND bs.backup_size > 0
    AND bs.[type] = 'D' -- Change to L if you want Log backups
    AND database_name = DB_NAME(DB_ID())
    ORDER BY bs.backup_finish_date DESC OPTION (RECOMPILE);
    
    -- Are your backup sizes and times changing over time?
    -- Are you using backup compression?
    
    
    -- These three Pluralsight Courses go into more detail about how to run these queries and interpret the results
    
    -- SQL Server 2014 DMV Diagnostic Queries � Part 1 
    -- http://www.pluralsight.com/courses/sql-server-2014-dmv-diagnostic-queries-part1
    
    -- SQL Server 2014 DMV Diagnostic Queries � Part 2
    -- http://www.pluralsight.com/courses/sql-server-2014-dmv-diagnostic-queries-part2
    
    -- SQL Server 2014 DMV Diagnostic Queries � Part 3
    -- http://www.pluralsight.com/courses/sql-server-2014-dmv-diagnostic-queries-part3
  • 相关阅读:
    13 文件操作
    10 dict嵌套与升级
    08 连接和顺序列表
    01 Python 逻辑运算
    了解bordercollapse
    orchard模块编写的错误及其解决办法
    orchard文档之理解内容处理器
    orchard文档之理解数据访问
    orchard文档之orchard工作原理
    orchard文档之创建自定义表单
  • 原文地址:https://www.cnblogs.com/lyhabc/p/4538145.html
Copyright © 2011-2022 走看看