zoukankan      html  css  js  c++  java
  • hdu 1078 FatMouse and Cheese (dfs + dp)

    题目:

    Problem Description
    FatMouse has stored some cheese in a city. The city can be considered as a square grid of dimension n: each grid location is labelled (p,q) where 0 <= p < n and 0 <= q < n. At each grid location Fatmouse has hid between 0 and 100 blocks of cheese in a hole. Now he's going to enjoy his favorite food.
    FatMouse begins by standing at location (0,0). He eats up the cheese where he stands and then runs either horizontally or vertically to another location. The problem is that there is a super Cat named Top Killer sitting near his hole, so each time he can run at most k locations to get into the hole before being caught by Top Killer. What is worse -- after eating up the cheese at one location, FatMouse gets fatter. So in order to gain enough energy for his next run, he has to run to a location which have more blocks of cheese than those that were at the current hole.

    Given n, k, and the number of blocks of cheese at each grid location, compute the maximum amount of cheese FatMouse can eat before being unable to move. 
     
    Input
    There are several test cases. Each test case consists of 

    a line containing two integers between 1 and 100: n and k 
    n lines, each with n numbers: the first line contains the number of blocks of cheese at locations (0,0) (0,1) ... (0,n-1); the next line contains the number of blocks of cheese at locations (1,0), (1,1), ... (1,n-1), and so on. 
    The input ends with a pair of -1's. 
     
    Output
    For each test case output in a line the single integer giving the number of blocks of cheese collected. 
     
    Sample Input
    3 1
    1 2 5
    10 11 6
    12 12 7
    -1 -1
     
    Sample Output
    37
     

     要求:   ① 起点在(0,0),每次 最多 能跳 k 格

              ② 下一个位置的 cheese 要比当前位置多 才能跳过去吃掉

              ③ 求最多 能吃多少

    第二次写这种思路的题。

    第一次是比赛的题  http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3644

    (看了学长的代码,学会的这种方法)

    思路 :

             从起点开始搜,如果直接搜的话,每次跳的格数不定,所以情况较多。

         其实这样会有重复的步骤,就可以用一个dp数组记录当前位置的最优值,下次搜到的时候直接用就行,可以省很多时间。

    代码 :

     1 #include<iostream>
     2 #include<cstring>
     3 using namespace std;
     4 
     5 int dp[105][105],map[105][105];
     6 int n,k,sum;
     7 
     8 int dfs( int x, int y ) {
     9 
    10     if( dp[x][y]!=-1 ) return dp[x][y];
    11 
    12     int Max=-1,flag=0;
    13 
    14     for( int i=1;i<=k;i++) {
    15 
    16         if( y+i<=n )
    17             if( map[x][y+i]>map[x][y] )
    18             {
    19                 flag=1;
    20                 Max= max( Max ,dfs(x,y+i)+map[x][y] );
    21             }
    22         if( y-i>=1 )
    23             if( map[x][y-i]>map[x][y] )
    24             {
    25                 flag=1;
    26                 Max= max( Max ,dfs(x,y-i)+map[x][y] );
    27             }
    28         if( x+i<=n )
    29             if( map[x+i][y]>map[x][y] )
    30             {
    31                 flag=1;
    32                 Max= max( Max ,dfs(x+i,y)+map[x][y] );
    33             }
    34         if( x-i>=1 )
    35             if( map[x-i][y]>map[x][y] )
    36             {
    37                 flag=1;
    38                 Max= max( Max ,dfs(x-i,y)+map[x][y] );
    39             }
    40     }
    41 
    42     if( !flag )  dp[x][y]=map[x][y];
    43     else  dp[x][y]=Max;
    44 
    45     return dp[x][y];
    46 }
    47 
    48 
    49 int main( ){
    50 
    51     while( 1 ) {
    52         cin >> n>>k;
    53         if( n==-1 && k==-1 ) break;
    54         sum=0;
    55         memset(dp,-1,sizeof(dp));
    56         for( int i=1;i<=n;i++)
    57            for( int j=1;j<=n;j++)
    58                cin >>map[i][j];
    59         cout << dfs(1,1)<<endl;
    60     }
    61     return 0;
    62 }
    View Code
  • 相关阅读:
    安装pip
    Jmeter查看吞吐量
    maven打包为jar文件时,解决scope为system的jar包无法被打包进jar文件的解决方案。
    spring cloud unavailable-replicas
    IDEA实用插件
    spring-mvc项目整合jetty实现单war包自启动webapp
    集成多数据源支持和REDIS后只有一个配置能起作用的处理。
    spring整合redis缓存,以注解(@Cacheable、@CachePut、@CacheEvict)形式使用
    基于spring的aop实现多数据源动态切换
    安装Oracle11gR2先决条件检查失败的详细解决处理过程
  • 原文地址:https://www.cnblogs.com/lysr--tlp/p/ppppp.html
Copyright © 2011-2022 走看看