转载请注明出处:優YoU http://user.qzone.qq.com/289065406/blog/1301472836
大致题意:
输入两个十进制正整数a和b,求闭区间 [a ,b] 内有多少个Round number
所谓的Round Number就是把一个十进制数转换为一个无符号二进制数,若该二进制数中0的个数大于等于1的个数,则它就是一个Round Number
注意,转换所得的二进制数,最高位必然是1,最高位的前面不允许有0
规定输入范围: 1<= a <b<=2E
用组合做
很猥琐的题,我首先说说猥琐的地方,再说说解题思路,有四点很猥琐:
(1)规定输入范围: 1<= a <b<=20E
输入的数是一个接近大数的非大数,int可以存储
网上看很多同学都说要用到精度,其实完全没必要,int能表示21E+的整数,精确的int极限能表示的正整数为2147483647,
但是即使这样,面对这题也不能松懈啊! bin[]边界的最小值为35 !!。
(2)bin[]数组若果定义为局部数组,等着WA吧!
我找不到任何原因为什么会这样,bin不管是全局定义 还是 局部定义,本地是完全AC的,上传就出问题了,局部WA,全局AC。
人家有强权,我被迫把传参del掉,把bin改为全局,郁闷!猥琐!
(3)组合数打表,同(1)的猥琐,c[][]边界的最小值为33,就是说如果定义组合表的大小比
c[33][33]小的,就等着RE吧!
还有就是这个算法有一个违背常识的处理,要把c[0][0]=1,不然某些最终结果会少1
(4)输入不能用循环输入while(cin>>…),不然你就等着OLE (就是Output Limit Excessed,很少见吧!)。不知道数据库是怎么回事,输入竟然不会根据读取数据结束而结束,而是无限输出最后一次输入所得的结果……老老实实一次输出就end file吧!
解题思路:
组合数学题,不知道为什么会被归类到递推数学,可能是因为杨辉三角和组合数之间的关系。。。
我根据我写的程序讲解好了
要知道闭区间 [a ,b] 内有多少个Round number,只需要分别求出
闭区间 [0 ,a] 内有T个RN
闭区间 [0 ,b+1] 内有S个RN
再用 S – T 就是闭区间 [a ,b] 内的RN数了
至于为什么是 b+1,因为对于闭区间 [0 ,k] ,我下面要说的算法求出的是比k小的RN数,就是说不管 k是不是RN, 都没有被计算在内,所以若要把闭区间[a ,b]的边界a和b都计算在内,就要用上述的处理方法。
现在问题的关键就是如何求[0 ,k]内的RN数了
首先要把k转化为二进制数bin-k,并记录其位数(长度)len
那么首先计算长度小于len的RN数有多少(由于这些数长度小于len,那么他们的值一定小于k,因此在进行组合时就无需考虑组合所得的数与k之间的大小了)
for(i=1;i<bin[0]-1;i++) //bin[0]记录的是二进制数的长度len
for(j=i/2+1;j<=i;j++)
sum+=c[i][j];
可以看到,i<len-1 ,之所以减1,是因为这些长度比len小的数,最高位一定是1,那么剩下可供放入数字的位数就要再减少一个了
这条程序得到的sum为
1表示当前处理的二进制数的最高位,X表示该二进制数待放入数字的位
显然这段程序把 二进制数0 排除在外了,这个是最终结果没有影响的,因为最后要把区间[a , b]首尾相减,0存不存在都一样了。
然后计算长度等于len的RN数有多少(由于这些数长度等于len,那么他们的值可能小于k,可能大于k,因此在进行组合时就要考虑组合所得的数与k之间的大小了)
int zero=0; //从高位向低位搜索过程中出现0的位的个数
for(i=bin[0]-1;i>=1;i--)
if(bin[i]) //当前位为1
for(j=(bin[0]+1)/2-(zero+1);j<=i-1;j++)
sum+=c[i-1][j];
else
zero++;
之所以初始化i=bin[0]-1,是因为bin[]是逆向存放k的二进制的,因此要从高位向低位搜索,就要从bin[]后面开始,而要 bin[0]-1 ,是因为默认以后组合的数长度为len,且最高位为1,因此最高位不再搜索了。
那么问题的关键就是怎样使得以后组合的数小于k了
这个很简单:
从高位到低位搜索过程中,遇到当前位为0,则不处理,但要用计数器zero累计当前0出现的次数
遇到当前位为1,则先把它看做为0,zero+1,那么此时当前位 后面的 所有低位任意组合都会比k小,找出这些组合中RN的个数,统计完毕后把当前位恢复为原来的1,然后zero-1,继续向低位搜索
那么问题就剩下 当当前位为1时,把它看做0之后,怎样去组合后面的数了
此时组合要考虑2个方面:
(1) 当前位置i后面允许组合的低位有多少个,我的程序由于bin是从bin[1]开始存储二进制数的,因此 当前位置i后面允许组合的低位有i-1个
(2) 组合前必须要除去前面已出现的0的个数zero
我的程序中初始化j=(bin[0]+1)/2-(zero+1), j本来初始化为(bin[0]+1)/2就可以了,表示对于长度为bin[0]的二进制数,当其长度为偶数时,至少其长度一半的位数为0,它才是RN,当其长度为奇数时,至少其长度一半+1的位数为0,它才是RN。
但是现在还必须考虑前面出现了多少个0,根据前面出现的0的个数,j的至少取值会相应地减少。 -(zero+1) ,之所以+1,是因为要把当前位bin[i]看做0
然后到了最后,剩下一个问题就是怎样得到每一个
就能看到他们之间关系密切啊!区别就是顶点的值,杨辉三角为1,组合数为0)
好好体会一下吧!
其实组合数也可以直接用计算方法做(n的规模可以至少扩展到1000),不过这里n的规模只有26,打表应该是更快的,有兴趣学习用计算方法做组合数的同学可以联系我,这个要用另外的数学方法处理。
我QQ289065406 O(∩_∩)O哈哈~
1 //Memory Time
2 //224K 16MS
3
4 #include<iostream>
5 using namespace std;
6
7 int c[33][33]={0};
8 int bin[35]; //十进制n的二进制数
9
10 /*打表,计算nCm*/
11
12 void play_table(void)
13 {
14 for(int i=0;i<=32;i++)
15 for(int j=0;j<=i;j++)
16 if(!j || i==j)
17 c[i][j]=1;
18 else
19 c[i][j]=c[i-1][j-1]+c[i-1][j];
20 // c[0][0]=0;
21 return;
22 }
23
24 /*十进制n转换二进制,逆序存放到bin[]*/
25
26 void dec_to_bin(int n)
27 {
28 bin[0]=0; //b[0]是二进制数的长度
29 while(n)
30 {
31 bin[++bin[0]]=n%2;
32 n/=2;
33 }
34 return;
35 }
36
37 /*计算比十进制数n小的所有RN数*/
38
39 int round(int n)
40 {
41 int i,j;
42 int sum=0; //比十进制数n小的所有RN数
43 dec_to_bin(n);
44
45 /*计算长度小于bin[0]的所有二进制数中RN的个数*/
46
47 for(i=1;i<bin[0]-1;i++)
48 for(j=i/2+1;j<=i;j++)
49 sum+=c[i][j];
50
51 /*计算长度等于bin[0]的所有二进制数中RN的个数*/
52
53 int zero=0; //从高位向低位搜索过程中出现0的位的个数
54 for(i=bin[0]-1;i>=1;i--)
55 if(bin[i]) //当前位为1
56 for(j=(bin[0]+1)/2-(zero+1);j<=i-1;j++)
57 sum+=c[i-1][j];
58 else
59 zero++;
60
61 return sum;
62 }
63
64 int main(void)
65 {
66 play_table();
67
68 int a,b;
69 cin>>a>>b;
70 cout<<round(b+1)-round(a)<<endl;
71
72 return 0;
73 }