zoukankan      html  css  js  c++  java
  • [RTThread 源码分析] 2. 内存管理2

    /**
     * This function will change the previously allocated memory block.
     *
     * @param rmem pointer to memory allocated by rt_malloc
     * @param newsize the required new size
     *
     * @return the changed memory block address
     */
    void *rt_realloc(void *rmem, rt_size_t newsize)
    {
        rt_size_t size;
        rt_size_t ptr, ptr2;
        struct heap_mem *mem, *mem2;
        void *nmem;
    
        RT_DEBUG_NOT_IN_INTERRUPT;
    
        /* alignment size */
        // 首先要将地址对齐,然后计算新分配的大小
        newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
        if (newsize > mem_size_aligned)
        {
            // 新分配的内存大小不能大于总的大小
            RT_DEBUG_LOG(RT_DEBUG_MEM, ("realloc: out of memory\n"));
    
            return RT_NULL;
        }
    
        /* allocate a new memory block */
        // 如果传入的指针为空,则直接调用malloc分配一个新的内存块
        if (rmem == RT_NULL)
            return rt_malloc(newsize);
        // 等待信号量,防止内存分配竞争
        rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
    
        if ((rt_uint8_t *)rmem < (rt_uint8_t *)heap_ptr ||
            (rt_uint8_t *)rmem >= (rt_uint8_t *)heap_end)
        {
            // 如果传入的内存指针小于最小值和大于最大值,则为非法
            // 然后释放信号量,退出。
            /* illegal memory */
            rt_sem_release(&heap_sem);
    
            return rmem;
        }
    
        mem = (struct heap_mem *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
        // 因为传入的内存块的地址是不包括内存控制块的,这里需要重新加上
        
        ptr = (rt_uint8_t *)mem - heap_ptr;         // 得到相对偏移量
        size = mem->next - ptr - SIZEOF_STRUCT_MEM; // 得到当前这个内存块的大小
        if (size == newsize)
        {
            /* the size is the same as */
            // 如果大小没变,则不用再次分配,直接返回
            rt_sem_release(&heap_sem);
    
            return rmem;
        }
    
        if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE < size)  //新大小满足要求
        {
            /* split memory block */
    #ifdef RT_MEM_STATS
            used_mem -= (size - newsize);
    #endif
            // 这一段就是把原来的ptr扩大
            // ptr2是指向后一个未用的块
            ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;   // 指向新的内存块
            mem2 = (struct heap_mem *)&heap_ptr[ptr2];  // 转换为内存控制块
            mem2->magic= HEAP_MAGIC;
            mem2->used = 0;
            mem2->next = mem->next;
            mem2->prev = ptr;
            mem->next = ptr2;                           // 链表操作,不再重复
            if (mem2->next != mem_size_aligned + SIZEOF_STRUCT_MEM)
            {
                // 如果不是这个heap的末尾,就让mem2的后一个块的prev指向mem2
                ((struct heap_mem *)&heap_ptr[mem2->next])->prev = ptr2;
            }
            // 这个函数处理一些零碎的空间
            plug_holes(mem2);
    
            rt_sem_release(&heap_sem);
    
            return rmem;
        }
        rt_sem_release(&heap_sem);
    
        /* expand memory */
        // 如果新大小不满足要求,则直接开辟一块内存
        nmem = rt_malloc(newsize);
        if (nmem != RT_NULL) /* check memory */
        {
            rt_memcpy(nmem, rmem, size < newsize ? size : newsize); 
            // 将原来内存块的内容拷贝到新内存块中
            rt_free(rmem);
        }
    
        return nmem;
    }
    RTM_EXPORT(rt_realloc);
    
    /**
     * This function will contiguously allocate enough space for count objects
     * that are size bytes of memory each and returns a pointer to the allocated
     * memory.
     *
     * The allocated memory is filled with bytes of value zero.
     *
     * @param count number of objects to allocate
     * @param size size of the objects to allocate
     *
     * @return pointer to allocated memory / NULL pointer if there is an error
     */
    void *rt_calloc(rt_size_t count, rt_size_t size)
    {
        void *p;
    
        RT_DEBUG_NOT_IN_INTERRUPT;
    
        /* allocate 'count' objects of size 'size' */
        // 使用malloc分配
        p = rt_malloc(count * size);
    
        /* zero the memory */
        // 将内存中元素全部置零
        if (p)
            rt_memset(p, 0, count * size);
    
        return p;
    }
    RTM_EXPORT(rt_calloc);
    
    /**
     * This function will release the previously allocated memory block by
     * rt_malloc. The released memory block is taken back to system heap.
     *
     * @param rmem the address of memory which will be released
     */
    void rt_free(void *rmem)
    {
        struct heap_mem *mem;
    
        RT_DEBUG_NOT_IN_INTERRUPT;
    
        if (rmem == RT_NULL)
            return;
        RT_ASSERT((((rt_uint32_t)rmem) & (RT_ALIGN_SIZE-1)) == 0);
        RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)heap_ptr &&
                  (rt_uint8_t *)rmem < (rt_uint8_t *)heap_end);
    
        RT_OBJECT_HOOK_CALL(rt_free_hook, (rmem));
    
        if ((rt_uint8_t *)rmem < (rt_uint8_t *)heap_ptr ||
            (rt_uint8_t *)rmem >= (rt_uint8_t *)heap_end)
        // 确保传入内存地址合法
        {
            RT_DEBUG_LOG(RT_DEBUG_MEM, ("illegal memory\n"));
    
            return;
        }
    
        /* Get the corresponding struct heap_mem ... */
        // 获得传入内存块的内存控制块
        // 因为内存控制块在内存块的前部
        mem = (struct heap_mem *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
    
        RT_DEBUG_LOG(RT_DEBUG_MEM,
                     ("release memory 0x%x, size: %d\n", 
                      (rt_uint32_t)rmem, 
                      (rt_uint32_t)(mem->next - ((rt_uint8_t *)mem - heap_ptr))));
    
    
        /* protect the heap from concurrent access */
        rt_sem_take(&heap_sem, RT_WAITING_FOREVER);
    
        /* ... which has to be in a used state ... */
        RT_ASSERT(mem->used);
        RT_ASSERT(mem->magic == HEAP_MAGIC);
        /* ... and is now unused. */
        // 置位成不用状态
        mem->used  = 0;
        mem->magic = 0;
    
        if (mem < lfree)
        {
            /* the newly freed struct is now the lowest */
            // lfree指向最低可用内存块控制块地址
            // 这里更新lfree
            lfree = mem;
        }
    
    #ifdef RT_MEM_STATS
        used_mem -= (mem->next - ((rt_uint8_t*)mem - heap_ptr));
    #endif
    
        /* finally, see if prev or next are free also */
        // 处理零碎的块
        plug_holes(mem);
        rt_sem_release(&heap_sem);
    }
    
    
    static void plug_holes(struct heap_mem *mem)
    {
        struct heap_mem *nmem;
        struct heap_mem *pmem;
    
        RT_ASSERT((rt_uint8_t *)mem >= heap_ptr);
        RT_ASSERT((rt_uint8_t *)mem < (rt_uint8_t *)heap_end);
        RT_ASSERT(mem->used == 0);
    
        /* plug hole forward */
        // 把后面一个内存空洞填满
        // 获取后一个内存控制块
        nmem = (struct heap_mem *)&heap_ptr[mem->next];
        if (mem != nmem &&
            nmem->used == 0 &&
            (rt_uint8_t *)nmem != (rt_uint8_t *)heap_end)
        {
            /* if mem->next is unused and not end of heap_ptr,
             * combine mem and mem->next
             */
            // 如果存在后一个内存块,且没有使用,且不是末尾
            if (lfree == nmem)          // 如果后一个是lfree
            {
                lfree = mem;            // 更新lfree为mem
            }
            mem->next = nmem->next;     // 链表操作,即删除nmem
            ((struct heap_mem *)&heap_ptr[nmem->next])->prev = (rt_uint8_t *)mem - heap_ptr;
            // 为什么这么烦?
            // 因为1. next, prev都是使用相对地址
            // 2. heap_ptr和mem的指针类型不一样
        }
    
        /* plug hole backward */
        // 把前一个空洞填满
        // 获取前一个内存控制块
        pmem = (struct heap_mem *)&heap_ptr[mem->prev];
        if (pmem != mem && pmem->used == 0)
        {
            /* if mem->prev is unused, combine mem and mem->prev */
            if (lfree == mem)
            {
                lfree = pmem;   // 更新lfree
            }
            pmem->next = mem->next;
            ((struct heap_mem *)&heap_ptr[mem->next])->prev = (rt_uint8_t *)pmem - heap_ptr;
            // 链表操作,删除
        }
    }

  • 相关阅读:
    【1】
    正则表达式 re模块
    模块—— 序列化模块、random模块、os模块 、 sys模块、hashlib模块、collections模块
    编码转换 文件的操作
    函数进阶3 —— 生成器、yield from
    函数的进阶2
    函数进阶 —— 动态参数、内置空间、函数嵌套
    初识函数 函数参数 三元运算
    Sringboot jdbc 操作数据库
    python使用subprocess执行linux命令
  • 原文地址:https://www.cnblogs.com/lyyyuna/p/4123907.html
Copyright © 2011-2022 走看看