zoukankan      html  css  js  c++  java
  • [LintCode] Coins in a Line II Review

    There are n coins with different value in a line. Two players take turns to take one or two coins from left side until there are no more coins left. The player who take the coins with the most value wins.

    Could you please decide the first player will win or lose?

    Example

    Given values array A = [1,2,2], return true.

    Given A = [1,2,4], return false.

    Solution 1. Recursion 

    In order for the first player to win, the coin value he gets must be bigger than a half of the total value of n coins. 

    For a given start index that the first player can pick one or two coins at,  he can either pick one coin of values[startIdx] or two coins of values[startIdx] + values[startIdx + 1].  

    Given that the second player plays optimally too, we have the following optimal substructure.

    As we can see from the optimal substructure, there exists many overlapping subproblems that are redundantly recomputed, making this recursive solution inefficient.

    26         int pickOneVal = Math.min(fPMaxValue(values, startIdx + 2, currVal), 
    27                          fPMaxValue(values, startIdx + 3, currVal)) + values[startIdx];
    28         int pickTwoVal = Math.min(fPMaxValue(values, startIdx + 3, currVal),
    29                          fPMaxValue(values, startIdx + 4, currVal)) + values[startIdx] + values[startIdx + 1];
    30         return Math.max(pickOneVal, pickTwoVal);

     1 public class Solution {
     2     public boolean firstWillWin(int[] values) {
     3         if(values == null || values.length == 0){
     4             return false;
     5         }
     6         if(values.length <= 2){
     7             return true;
     8         }
     9         int sum = 0; 
    10         for(int i = 0; i < values.length; i++){
    11             sum += values[i];
    12         }
    13         return fPMaxValue(values, 0, 0) > sum / 2;
    14     }
    15     private int fPMaxValue(int[] values, int startIdx, int currVal){
    16         int diff = values.length - startIdx;
    17         if(diff == 2 || diff == 3){
    18             return currVal + values[startIdx] + values[startIdx + 1];
    19         }
    20         if(diff == 1){
    21             return currVal + values[startIdx];
    22         }
    23         if(diff <= 0){
    24             return currVal;
    25         }
    26         int pickOneVal = Math.min(fPMaxValue(values, startIdx + 2, currVal), 
    27                          fPMaxValue(values, startIdx + 3, currVal)) + values[startIdx];
    28         int pickTwoVal = Math.min(fPMaxValue(values, startIdx + 3, currVal),
    29                          fPMaxValue(values, startIdx + 4, currVal)) + values[startIdx] + values[startIdx + 1];
    30         return Math.max(pickOneVal, pickTwoVal);
    31     }
    32 }

    Solution 2. Dynamic Programming 

    Since solution 1 has both optimal substructure and overlapping subproblems, we can apply dynamic programming to avoid redundant recomputation of subproblems.

    Dp state: dp[i] is the most value player one can get when there is i coins left.

    Dp function: 

    dp[i] = Math.max(Math.min(dp[i - 2], dp[i - 3]) + values[n - i],  Math.min(dp[i - 3], dp[i - 4]) + values[n - i] + values[n - i + 1]);

     1 public class Solution {
     2     public boolean firstWillWin(int[] values) {
     3         if(values == null || values.length == 0){
     4             return false;
     5         }
     6         if(values.length <= 2){
     7             return true;
     8         }
     9         int sum = 0; 
    10         for(int i = 0; i < values.length; i++){
    11             sum += values[i];
    12         }
    13         int n = values.length;
    14         int[] dp = new int[n + 1];
    15         dp[0] = 0;
    16         dp[1] = values[n - 1];
    17         dp[2] = values[n - 2] + values[n - 1];
    18         dp[3] = values[n - 3] + values[n - 2];
    19         for(int i = 4; i <= n; i++){
    20             dp[i] = Math.max(Math.min(dp[i - 2], dp[i - 3]) + values[n - i], 
    21                              Math.min(dp[i - 3], dp[i - 4]) + values[n - i] + values[n - i + 1]);
    22         }
    23         return dp[n] > sum / 2;
    24     }
    25 }
  • 相关阅读:
    ORACLE11G 字符集更改(这里更改为AL32UTF8)
    linux 安装jdk1.8
    oracle的 listagg() WITHIN GROUP ()函数使用
    数据库事务中的隔离级别和锁以及spring @Transactional注解参数详解
    java读取Oracle中大字段数据(CLOB)的方法
    oracle常用函数_时间
    案例-todolist计划列表【添加计划】
    案例-todolist计划列表【显示列表】
    案例-todolist计划列表[基本代码]
    vue 阻止元素的默认行为
  • 原文地址:https://www.cnblogs.com/lz87/p/6936075.html
Copyright © 2011-2022 走看看