zoukankan      html  css  js  c++  java
  • [LeetCode 322] Coin Change

    You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

    Example 1:
    coins = [1, 2, 5], amount = 11
    return 3 (11 = 5 + 5 + 1)

    Example 2:
    coins = [2], amount = 3
    return -1.

    Note:
    You may assume that you have an infinite number of each kind of coin.

    BackPack VI and Combination Sum IV:  Find all possible combinations that sum to a target value 

    Coin Change: Find the combination that sums to a target value and uses the fewest number of elements

    State: dp[i]: the fewest number of coins needed that sum to i

    Function: dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1), if i >= coins[j] && dp[i - coins[j]] < Integer.MAX_VALUE

    i >= coins[j]: only consider picking a coin if its value is not greater than the target value i;

    dp[i - coins[j]] < Integer.MAX_VALUE: if we did pick coins[j], then we must be able to find a combination that sums 

    to i - coins[j];

    Initialization: dp[0] = 0, dp[i] = Integer.MAX_VALUE, for i >= 1

    Answer: dp[amount] or -1

     1 public class Solution {
     2     public int coinChange(int[] coins, int amount) {
     3         if(amount <= 0){
     4             return 0;
     5         }
     6         if(coins == null || coins.length == 0){
     7             return -1;
     8         }
     9         int[] dp = new int[amount + 1];
    10         dp[0] = 0;
    11         for(int i = 1; i <= amount; i++){
    12             dp[i] = Integer.MAX_VALUE;
    13         }
    14         for(int i = 1; i <= amount; i++){
    15             for(int j = 0; j < coins.length; j++){
    16                 if(i >= coins[j] && dp[i - coins[j]] < Integer.MAX_VALUE){
    17                     dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
    18                 }
    19             }
    20         }
    21         if(dp[amount] < Integer.MAX_VALUE){
    22             return dp[amount];
    23         }
    24         return -1;
    25     }
    26 }

    Related Problems

    BackPack VI

    Combination Sum IV

  • 相关阅读:
    POJ1422 最小路径覆盖
    POJ1422 最小路径覆盖
    POJ1125 Floyd
    POJ1125 Floyd
    POJ2570 二进制,位运算,Floyd
    POJ2570 二进制,位运算,Floyd
    POJ2446 二分匹配
    POJ2536 二分图匹配
    POJ2536 二分图匹配
    POJ3692 最大点权独立集元素个数
  • 原文地址:https://www.cnblogs.com/lz87/p/7006859.html
Copyright © 2011-2022 走看看