zoukankan      html  css  js  c++  java
  • [Coding Made Simple] Maximum Sum Increasing Subsequence

    Given an array, find maximum sum increasing subsequence in this array.

    Solution 1. Recursion

    For arr[0....n], the max sum increasing subsequence can be computed from first computing its subarrays' max sum increasing subsequence. 

    MaxSumIncreSubseq(n) = max {arr[n],  max of {MaxSumIncreSubseq(i) + arr[n],  for i from 0 to n - 1}}; 

     1 public int getMaxSumIncreSubseqRecursion(int[] arr) {
     2     if(arr == null || arr.length == 0) {
     3         return 0;
     4     }
     5     int maxSum = Integer.MIN_VALUE;
     6     for(int i = 0; i < arr.length; i++) {
     7         int sum = recursiveHelper(arr, i);
     8         maxSum = Math.max(maxSum, sum);
     9     }
    10     return maxSum;
    11 }
    12 private int recursiveHelper(int[] arr, int endIdx) {
    13     int max = arr[endIdx];
    14     for(int i = 0; i < endIdx; i++) {
    15         if(arr[i] < arr[endIdx]) {
    16             max = Math.max(max, recursiveHelper(arr, i) + arr[endIdx]);
    17         }
    18     }
    19     return max;
    20 }

     Solution 2. Dynamic Programming

    State: T[i]: the max sum of increasing subsequence that ends with arr[i].

    Function: T[i] = max of T[j] + arr[i],  for j from 0 to i - 1, if arr[j] < arr[i];

    Init: T[i] = arr[i], as we always know one of the increasing subsequence that ends with arr[i] is itself without other elements.

    Answer: max of T[i].

     1 import java.util.ArrayList;
     2 
     3 public class MaxSumIncreasingSubseq {
     4     private ArrayList<Integer> maxSumSubseq;
     5     public int getMaxSumIncreSubseqDp(int[] arr) {
     6         if(arr == null || arr.length == 0) {
     7             return 0;
     8         }
     9         int[] T = new int[arr.length];
    10         int[] seqIdx = new int[arr.length];
    11         for(int i = 0; i < T.length; i++) {
    12             T[i] = arr[i];
    13             seqIdx[i] = i;
    14         }
    15         for(int i = 0; i < T.length; i++) {
    16             for(int j = 0; j < i; j++) {
    17                 if(arr[j] < arr[i]) {
    18                     if(T[j] + arr[i] > T[i]) {
    19                         T[i] = T[j] + arr[i];
    20                         seqIdx[i] = j;
    21                     }
    22                 }
    23             }
    24         }
    25         int max = Integer.MIN_VALUE;
    26         int maxIdx = -1;
    27         for(int i = 0; i < arr.length; i++) {
    28             if(T[i] > max) {
    29                 max = T[i];
    30                 maxIdx = i;
    31             }
    32         }
    33         maxSumSubseq = new ArrayList<Integer>();
    34         int currIdx = maxIdx;
    35         while(currIdx != seqIdx[currIdx]) {
    36             maxSumSubseq.add(currIdx);
    37             currIdx = seqIdx[currIdx];
    38         }
    39         maxSumSubseq.add(currIdx);
    40         return max;
    41     }
    42 }

    Related Problems 

    [LintCode] Longest Increasing Subsequence

  • 相关阅读:
    套题 8.22
    套题 8.21
    P1042 乒乓球
    套题8.20
    #52. 【UR #4】元旦激光炮 (交互式题)
    #82. 【UR #7】水题生成器
    度度熊与邪恶大魔王
    wpf 获取image控件的图片并保存
    wpf 让正执行的程序暂停几秒钟
    wpf问题集锦
  • 原文地址:https://www.cnblogs.com/lz87/p/7288848.html
Copyright © 2011-2022 走看看