zoukankan      html  css  js  c++  java
  • MT【167】反复放缩

    已知数列${a_n}$满足:$a_1=1,a_{n+1}=a_n+dfrac{a_n^2}{n(n+1)}$
    1)证明:对任意$nin N^+,a_n<5$
    2)证明:不存在$Mle4$,使得对任意$n,a_n<M$

    证明:
    1)显然$a_{n+1}>a_n,a_{n+1}=a_n+dfrac{a_n^2}{n(n+1)}<a_n+dfrac{a_na_{n+1}}{n(n+1)}$
    故$dfrac{1}{a_n}<dfrac{1}{a_{n+1}}+dfrac{1}{n(n+1)}$ 累加得:$dfrac{1}{a_3}<dfrac{1}{a_n}+dfrac{1}{3}-dfrac{1}{n}$
    由于$a_1=1,a_2=dfrac{3}{2},a_3=dfrac{15}{8}$代入上式得$dfrac{1}{a_n}ge dfrac{1}{n}+dfrac{1}{5}>dfrac{1}{5}$.故$a_n<5(nin N^+)$
    2)由(1)$dfrac{1}{a_n}ge dfrac{1}{n}+dfrac{1}{5},a_n<dfrac{5n}{n+5},(nge3)$
    故$a_{n+1}=a_n+dfrac{a_n^2}{n(n+1)}<a_n+dfrac{frac{5n}{n+5}a_n}{n(n+1)}=dfrac{n^2+6n+10}{(n+1)(n+5)}a_n$
    故$a_ngedfrac{(n+1)(n+5)}{n^2+6n+10}a_{n+1}$
    故$a_{n+1}=a_n+dfrac{a_n^2}{n(n+1)}ge a_n+dfrac{frac{(n+1)(n+5)}{n^2+6n+10}a_na_{n+1}}{n(n+1)}=a_n+dfrac{n+5}{n^3+6n^2+10n}a_na_{n+1}$
    故$dfrac{1}{a_n}gedfrac{1}{a_{n+1}}+dfrac{n+5}{n^3+6n^2+10n}a_na_{n+1}
    gedfrac{1}{a_{n+1}}+dfrac{17}{20n(n+1)},(nge3)$
    累加得$dfrac{1}{a_3}gedfrac{1}{a_n}+dfrac{17}{20}(dfrac{1}{3}-dfrac{1}{n})$
    代入$a_3=dfrac{15}{8}$得,$a_ngedfrac{20n}{5n+17} ightarrow 4$
    故不存在$Mle4$,使得对任意$n,a_n<M$

    注:此类题型也较常见,但往往最后一步裂项放缩要观察一下。

  • 相关阅读:
    Java vs Python
    Compiled Language vs Scripting Language
    445. Add Two Numbers II
    213. House Robber II
    198. House Robber
    276. Paint Fence
    77. Combinations
    54. Spiral Matrix
    82. Remove Duplicates from Sorted List II
    80. Remove Duplicates from Sorted Array II
  • 原文地址:https://www.cnblogs.com/mathstudy/p/8954407.html
Copyright © 2011-2022 走看看