zoukankan      html  css  js  c++  java
  • 数据结构和算法系列16 哈夫曼树

    这一篇要总结的是树中的最后一种,即哈夫曼树,我想从以下几点对其进行总结:

    1,什么是哈夫曼树?

    2,如何构建哈夫曼树?

    3,哈夫曼编码?

    4,算法实现?

    一,什么是哈夫曼树

    什么是哈夫曼树呢?

    哈夫曼树是一种带权路径长度最短的二叉树,也称为最优二叉树。下面用一幅图来说明。

    ds48

    它们的带权路径长度分别为:

    图a: WPL=5*2+7*2+2*2+13*2=54

    图b: WPL=5*3+2*3+7*2+13*1=48

    可见,图b的带权路径长度较小,我们可以证明图b就是哈夫曼树(也称为最优二叉树)。

    二,如何构建哈夫曼树

    一般可以按下面步骤构建:

    1,将所有左,右子树都为空的作为根节点。

    2,在森林中选出两棵根节点的权值最小的树作为一棵新树的左,右子树,且置新树的附加根节点的权值为其左,右子树上根节点的权值之和。注意,左子树的权值应小于右子树的权值。

    3,从森林中删除这两棵树,同时把新树加入到森林中。

    4,重复2,3步骤,直到森林中只有一棵树为止,此树便是哈夫曼树。

    下面是构建哈夫曼树的图解过程:

    ds52

    三,哈夫曼编码

    利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。树中从根到每个叶子节点都有一条路径,对路径上的各分支约定指向左子树的分支表示”0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为各个叶子节点对应的字符编码,即是哈夫曼编码。

    就拿上图例子来说:

    A,B,C,D对应的哈夫曼编码分别为:111,10,110,0

    用图说明如下:

    ds50

    记住,设计电文总长最短的二进制前缀编码,就是以n个字符出现的频率作为权构造一棵哈夫曼树,由哈夫曼树求得的编码就是哈夫曼编码。

    四,算法实现

    C#版:

    namespace HuffTree.CSharp
    {
        class Program
        {
            static void Main(string[] args)
            {
                //四个叶子节点
                int leafNum = 4;
    
                //赫夫曼树的节点总数
                int totalNodes = 2 * leafNum - 1;
    
                //各叶子节点的权值
                int[] weight = new int[] { 5,7,2,13};
    
                //各叶子节点的值
                string[] alphabet = new string[] { "A","B","C","D"};
    
                //初始化赫夫曼树
                HuffmanTree[] huffmanTree = new HuffmanTree[totalNodes].Select(p => new HuffmanTree() { }).ToArray();
    
                //构建赫夫曼树
                HuffmanTreeBLL.Create(huffmanTree,leafNum,weight);
    
                //赫夫曼编码
                string[] huffmanCode = HuffmanTreeBLL.Coding(huffmanTree,leafNum);
    
                //打印结果
                PrintResult(alphabet,huffmanTree,huffmanCode,leafNum);
    
                Console.ReadKey();
            }
    
            /// <summary>
            /// 打印结果
            /// </summary>
            /// <param name="alphabet"></param>
            /// <param name="huffmanTree"></param>
            /// <param name="huffmanCode"></param>
            /// <param name="leafNum"></param>
            private static void PrintResult(string[] alphabet,HuffmanTree[] huffmanTree,string[] huffmanCode,int leafNum)
            {
                if (alphabet.Count() < 1 || huffmanTree.Count() < 1 || huffmanCode.Count() < 1) return;
    
                for (int i = 0; i < leafNum; i++)
                {
                    Console.WriteLine("字符:{0},权重值:{1},赫夫曼编码:{2}",alphabet[i],huffmanTree[i].Weight,huffmanCode[i]);
                }
            }
        }
    }
    
    namespace DS.BLL
    {
        /// <summary>
        /// 描述:赫夫曼树操作类
        /// 作者:鲁宁
        /// 时间:2013/9/17 18:14:33
        /// </summary>
        public class HuffmanTreeBLL
        {
            /// <summary>
            /// 构建赫夫曼树
            /// 思路:一步一步向上搭建
            /// </summary>
            /// <param name="huffmanTree">待操作的赫夫曼树</param>
            /// <param name="leafNum">叶节点数量</param>
            /// <param name="weight">节点权重值</param>
            /// <returns>构建好的赫夫曼树</returns>
            public static HuffmanTree[] Create(HuffmanTree[] huffmanTree, int leafNum, int[] weight)
            {
                //获取赫夫曼树结点总数
                int totalNodes = 2 * leafNum - 1;
    
                InitLeafNode(huffmanTree,leafNum,weight);
                
                //构造赫夫曼树(4个节点只需要3步就可以完成构建)
                for (int i = leafNum; i < totalNodes; i++)
                { 
                    //获取权重最小的两个叶子节点的下标
                    int minIndex1 = -1;
                    int minIndex2 = -1;
                    SelectNode(huffmanTree,i,ref minIndex1,ref minIndex2);
    
                    huffmanTree[minIndex1].Parent = i;
                    huffmanTree[minIndex2].Parent = i;
    
                    huffmanTree[i].Left = minIndex1;
                    huffmanTree[i].Right = minIndex2;
                    huffmanTree[i].Weight = huffmanTree[minIndex1].Weight + huffmanTree[minIndex2].Weight;
                }
                return huffmanTree;
            }
    
            /// <summary>
            /// 赫夫曼编码
            /// 思路:左子树为0,右子树为1,对应的编码后的规则是:从根节点到子节点
            /// </summary>
            /// <param name="huffmanTree">待操作的赫夫曼树</param>
            /// <param name="leafNum">叶子节点的数量</param>
            /// <returns>赫夫曼编码</returns>
            public static string[] Coding(HuffmanTree[] huffmanTree, int leafNum)
            { 
                string[] huffmanCode= new string[leafNum];
    
                //当前节点下标
                int current = 0;
                //父节点下标
                int parent = 0;
    
                for (int i = 0; i < leafNum; i++)
                {
                    string codeTemp = string.Empty;
                    current = i;
                    
                    //第一次获取最左节点
                    parent = huffmanTree[current].Parent;
    
                    while (parent != 0)
                    {
                        if (huffmanTree[parent].Left == current) codeTemp += "0";
                        else codeTemp += "1";
    
                        current = parent;
                        parent = huffmanTree[parent].Parent;
                    }
                    huffmanCode[i] = new string(codeTemp.Reverse().ToArray());
                }
                return huffmanCode;
            }
    
    
            /// <summary>
            /// 初始化叶节点
            /// </summary>
            /// <param name="huffmanTree"></param>
            /// <param name="leafNum"></param>
            /// <param name="weight"></param>
            private static void InitLeafNode(HuffmanTree[] huffmanTree, int leafNum, int[] weight)
            {
                if (huffmanTree == null || leafNum<1 || weight.Count()<1) return;
    
                for (int i = 0; i < leafNum; i++)
                {
                    huffmanTree[i].Weight = weight[i];
                }
            }
    
            /// <summary>
            /// 获取叶子节点中权重最小的两个节点
            /// </summary>
            /// <param name="huffmanTree">待操作的赫夫曼</param>
            /// <param name="searchNode">要查找的节点数</param>
            /// <param name="minIndex1"></param>
            /// <param name="minIndex2"></param>
            private static void SelectNode(HuffmanTree[] huffmanTree, int searchNode, ref int minIndex1, ref int minIndex2)
            {
                HuffmanTree minNode1 = null;
                HuffmanTree minNode2 = null;
    
                for (int i = 0; i < searchNode; i++)
                {
                    //只查找独根树叶子节点
                    if (huffmanTree[i].Parent == 0)
                    {
                        //如果为null,则表示当前节叶子节点最小
                        if (minNode1 == null)
                        {
                            minIndex1 = i;
                            minNode1= huffmanTree[i];
                            continue;
                        }
    
                        if (minNode2 == null)
                        {
                            minIndex2 = i;
                            minNode2= huffmanTree[i];
    
                            //交换位置,确保minIndex1为最小
                            if (minNode1.Weight >= minNode2.Weight)
                            { 
                                //节点交换
                                var temp = minNode1;
                                minNode1 = minNode2;
                                minNode2 = temp;
    
                                //交换下标
                                var tempIndex = minIndex1;
                                minIndex1 = minIndex2;
                                minIndex2 = tempIndex;
    
                                continue;
                            }
                        }
    
                        if (minNode1 != null && minNode2 != null)
                        {
                            if (huffmanTree[i].Weight < minNode1.Weight) //注意,不能是“<=”
                            {
                                //将min1临时转存给min2
                                minNode2 = minNode1;
                                minNode1 = huffmanTree[i];
    
                                //记录在数组中的下标
                                minIndex2 = minIndex1;
                                minIndex1 = i;
                            }
                            else
                            {
                                if (huffmanTree[i].Weight < minNode2.Weight)
                                { 
                                    minNode2= huffmanTree[i];
                                    minIndex2 = i;
                                }
                            }
                        }
                    }
                }
            }
        }
    
        /// <summary>
        /// 赫夫曼树存储结构
        /// </summary>
        public class HuffmanTree
        {
            public int Weight { get; set; } //权值
    
            public int Parent { get; set; } //父节点
    
            public int Left { get; set; } //左孩子节点
    
            public int Right { get; set; } //右孩子节点
        }
    }

    程序输出结果为:

    ds51

  • 相关阅读:
    pyhon简单比较文本相似度的方法
    MongoDB数据的导入、导出、备份与恢复
    django实现注册、登录小系统
    nginx+uwsgi部署django的简单介绍
    python操作Excel的几种方式
    Python的Pexpect的简单使用
    JVM之类加载
    Java中的绑定
    JVM之GC
    JVM之内存管理
  • 原文地址:https://www.cnblogs.com/mcgrady/p/3329825.html
Copyright © 2011-2022 走看看