zoukankan      html  css  js  c++  java
  • HDU1695-GCD(数论-欧拉函数-容斥)

    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5454    Accepted Submission(s): 1957


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     

    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     

    Output
    For each test case, print the number of choices. Use the format in the example.
     

    Sample Input
    2 1 3 1 5 1 1 11014 1 14409 9
     

    Sample Output
    Case 1: 9 Case 2: 736427
    Hint
    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
     

    题意: 求(1,a) 和(1,b) 两个区间 公约数为k的对数的个数

    思路:将a,b分别处以k,就能够转化为(1,a/k)和(1,b/k)两个区间两两互质的个数,能够先用欧拉函数求出(1,a)两两互质的个数,(a+1。b) 能够分解质因数。由于质因数的个数最多为7能够用容斥原理计算。


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <string>
    #include <algorithm>
    #include <queue>
    using namespace std;
    
    const int maxn = 10000+10;
    const int maxxn = 100000+10;
    typedef long long ll;
    int a,b,gcd;
    ll ans;
    bool isPrime[maxn];
    ll minDiv[maxxn],phi[maxxn],sum[maxxn];
    vector<int> prime,cnt[maxxn],digit[maxxn];
    
    void getPrime(){
        prime.clear();
        memset(isPrime,1,sizeof isPrime);
        for(int i = 2;i < maxn; i++){
            if(isPrime[i]){
                prime.push_back(i);
                for(int j = i*i; j < maxn; j+=i){
                    isPrime[j] = 0;
                }
            }
        }
    }
    
    void getPhi(){
        for(ll i = 1; i < maxxn; i++){
            minDiv[i] = i;
        }
        for(ll i = 2; i*i < maxxn; i++){
            if(minDiv[i]==i){
                for(int j = i*i; j < maxxn; j += i){
                    minDiv[j] = i;
                }
            }
        }
        phi[1] = 1;
        sum[1] = 1;
        for(ll i = 2; i < maxxn; i++){
            phi[i] = phi[i/minDiv[i]];
            if((i/minDiv[i])%minDiv[i]==0){
                phi[i] *= minDiv[i];
            }else{
                phi[i] *= minDiv[i]-1;
            }
            sum[i] = phi[i]+sum[i-1];
        }
    }
    
    void getDigit(){
        for(ll i = 1; i < maxxn; i++){
            int x = i;
            for(int j = 0; j < prime.size()&&x >= prime[j]; j++){
                if(x%prime[j]==0){
                    digit[i].push_back(prime[j]);
                    int t = 0;
                    while(x%prime[j]==0){
                        t++;
                        x /= prime[j];
                    }
                    cnt[i].push_back(t);
                }
            }
            if(x!=1){
                digit[i].push_back(x);
                cnt[i].push_back(1);
            }
        }
    }
    
    int main(){
        getPrime();
        getPhi();
        getDigit();
        int ncase,T=1;
        cin >> ncase;
        while(ncase--){
            int t1,t2;
            scanf("%d%d%d%d%d",&t1,&a,&t2,&b,&gcd);
            if(gcd==0){
                printf("Case %d: 0
    ",T++,ans);
                continue;
            }else{
                if(a > b) swap(a,b);
                a /= gcd,b /= gcd;
                ans = sum[a];
                for(ll i = a+1; i <= b; i++){
                    int d = digit[i].size();
                    int t = 0;
                    vector<int> di;
                    for(int k = 1; k < (1<<d); k++){
                        di.clear();
                        for(int f = 0; f < d; f++){
                            if(k&(1<<f)){
                                di.push_back(digit[i][f]);
                            }
                        }
                        int ji = 1;
                        for(int f = 0; f < di.size(); f++){
                            ji *= di[f];
                        }
                        if(di.size()%2==0){
                            t -= a/ji;
                        }else{
                            t += a/ji;
                        }
                    }
                    ans += a-t;
                }
                printf("Case %d: ",T++);
                cout<<ans<<endl;
            }
    
        }
        return 0;
    }
    


  • 相关阅读:
    质量标准
    期权只是一张纸而已,但它的背后是心机
    Spring注解 @Resource和@Autowired
    Java7新语法 -try-with-resources
    Spring中Bean的命名问题及ref和idref之间的区别
    mybatis注解详解
    jquery ajax局部加载方法介绍
    SpringMVC批量上传
    【uploadify3.1使用二】批量文件、图片上传
    IE浏览器上传文件时本地路径变成”C:fakepath”的问题
  • 原文地址:https://www.cnblogs.com/mengfanrong/p/5203820.html
Copyright © 2011-2022 走看看