zoukankan      html  css  js  c++  java
  • [ACM] POJ 2524 Ubiquitous Religions (并查集)

    Ubiquitous Religions
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 23093   Accepted: 11379

    Description

    There are so many different religions in the world today that it is difficult to keep track of them all. You are interested in finding out how many different religions students in your university believe in. 

    You know that there are n students in your university (0 < n <= 50000). It is infeasible for you to ask every student their religious beliefs. Furthermore, many students are not comfortable expressing their beliefs. One way to avoid these problems is to ask m (0 <= m <= n(n-1)/2) pairs of students and ask them whether they believe in the same religion (e.g. they may know if they both attend the same church). From this data, you may not know what each person believes in, but you can get an idea of the upper bound of how many different religions can be possibly represented on campus. You may assume that each student subscribes to at most one religion.

    Input

    The input consists of a number of cases. Each case starts with a line specifying the integers n and m. The next m lines each consists of two integers i and j, specifying that students i and j believe in the same religion. The students are numbered 1 to n. The end of input is specified by a line in which n = m = 0.

    Output

    For each test case, print on a single line the case number (starting with 1) followed by the maximum number of different religions that the students in the university believe in.

    Sample Input

    10 9
    1 2
    1 3
    1 4
    1 5
    1 6
    1 7
    1 8
    1 9
    1 10
    10 4
    2 3
    4 5
    4 8
    5 8
    0 0
    

    Sample Output

    Case 1: 1
    Case 2: 7
    

    Hint

    Huge input, scanf is recommended.

    Source


    解题思路:

    并查集的简单应用。

    最后分成了多少集合就是结果。

    代码:

    #include <iostream>
    #include <stdio.h>
    using namespace std;
    const int maxn=50010;
    int parent[maxn];
    int n,m;
    
    void init(int n)
    {
        for(int i=1;i<=n;i++)
            parent[i]=i;
    }
    
    int find(int x)
    {
        return parent[x]==x?x:find(parent[x]);
    }
    
    void unite(int x,int y)
    {
        x=find(x);
        y=find(y);
        if(x==y)
            return ;
        else
            parent[x]=y;
    }
    
    
    int main()
    {
        int c=1;
        while(scanf("%d%d",&n,&m)!=EOF&&(n||m))
        {
            int x,y;
            init(n);
            for(int i=1;i<=m;i++)
            {
                scanf("%d%d",&x,&y);
                unite(x,y);
            }
            int cnt=0;
            for(int i=1;i<=n;i++)
                if(parent[i]==i)
                    cnt++;
            cout<<"Case "<<c++<<": "<<cnt<<endl;
        }
        return 0;
    }
    


  • 相关阅读:
    设计模式 对象结构型 代理模式
    设计模式 对象/类结构型 适配器模式
    设计模式 创建型 原型模式
    设计模式 创建型 建造模式
    Django REST framework使用及源码分析之权限
    Django REST framework使用及源码分析之验证
    某游戏公司运维开发python笔试题
    django中间件的5个方法以及csrf的装饰器用法
    Django源码理解一
    消息中间件-RabbitMQ
  • 原文地址:https://www.cnblogs.com/mfmdaoyou/p/6714477.html
Copyright © 2011-2022 走看看