zoukankan      html  css  js  c++  java
  • paper 83:前景检测算法_1(codebook和平均背景法)

    前景分割中一个非常重要的研究方向就是背景减图法,因为背景减图的方法简单,原理容易被想到,且在智能视频监控领域中,摄像机很多情况下是固定的,且背景也是基本不变或者是缓慢变换的,在这种场合背景减图法的应用驱使了其不少科研人员去研究它。

          但是背景减图获得前景图像的方法缺点也很多:比如说光照因素,遮挡因素,动态周期背景,且背景非周期背景,且一般情况下我们考虑的是每个像素点之间独立,这对实际应用留下了很大的隐患。

          这一小讲主要是讲简单背景减图法和codebook法。

    一、简单背景减图法的工作原理。

          在视频对背景进行建模的过程中,每2帧图像之间对应像素点灰度值算出一个误差值,在背景建模时间内算出该像素点的平均值,误差平均值,然后在平均差值的基础上+-误差平均值的常数(这个系数需要手动调整)倍作为背景图像的阈值范围,所以当进行前景检测时,当相应点位置来了一个像素时,如果来的这个像素的每个通道的灰度值都在这个阈值范围内,则认为是背景用0表示,否则认为是前景用255表示。

          下面的一个工程是learning opencv一书中作者提供的源代码,关于简单背景减图的代码和注释如下:

         avg_background.h文件:

    ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    // Accumulate average and ~std (really absolute difference) image and use this to detect background and foreground
    //
    // Typical way of using this is to:
    //     AllocateImages();
    ////loop for N images to accumulate background differences
    //    accumulateBackground();
    ////When done, turn this into our avg and std model with high and low bounds
    //    createModelsfromStats();
    ////Then use the function to return background in a mask (255 == foreground, 0 == background)
    //    backgroundDiff(IplImage *I,IplImage *Imask, int num);
    ////Then tune the high and low difference from average image background acceptance thresholds
    //    float scalehigh,scalelow; //Set these, defaults are 7 and 6. Note: scalelow is how many average differences below average
    //    scaleHigh(scalehigh);
    //    scaleLow(scalelow);
    ////That is, change the scale high and low bounds for what should be background to make it work.
    ////Then continue detecting foreground in the mask image
    //    backgroundDiff(IplImage *I,IplImage *Imask, int num);
    //
    //NOTES: num is camera number which varies from 0 ... NUM_CAMERAS - 1.  Typically you only have one camera, but this routine allows
    //          you to index many.
    //
    #ifndef AVGSEG_
    #define AVGSEG_
    
    
    #include "cv.h"                // define all of the opencv classes etc.
    #include "highgui.h"
    #include "cxcore.h"
    
    //IMPORTANT DEFINES:
    #define NUM_CAMERAS   1              //This function can handle an array of cameras
    #define HIGH_SCALE_NUM 7.0            //How many average differences from average image on the high side == background
    #define LOW_SCALE_NUM 6.0        //How many average differences from average image on the low side == background
    
    void AllocateImages(IplImage *I);
    void DeallocateImages();
    void accumulateBackground(IplImage *I, int number=0);
    void scaleHigh(float scale = HIGH_SCALE_NUM, int num = 0);
    void scaleLow(float scale = LOW_SCALE_NUM, int num = 0);
    void createModelsfromStats();
    void backgroundDiff(IplImage *I,IplImage *Imask, int num = 0);
    
    #endif
    

       avg_background.cpp文件:

    // avg_background.cpp : 定义控制台应用程序的入口点。
    //
    
    #include "stdafx.h"
    #include "avg_background.h"
    
    
    //GLOBALS
    
    IplImage *IavgF[NUM_CAMERAS],*IdiffF[NUM_CAMERAS], *IprevF[NUM_CAMERAS], *IhiF[NUM_CAMERAS], *IlowF[NUM_CAMERAS];
    IplImage *Iscratch,*Iscratch2,*Igray1,*Igray2,*Igray3,*Imaskt;
    IplImage *Ilow1[NUM_CAMERAS],*Ilow2[NUM_CAMERAS],*Ilow3[NUM_CAMERAS],*Ihi1[NUM_CAMERAS],*Ihi2[NUM_CAMERAS],*Ihi3[NUM_CAMERAS];
    
    float Icount[NUM_CAMERAS];
    
    void AllocateImages(IplImage *I)  //I is just a sample for allocation purposes
    {
        for(int i = 0; i<NUM_CAMERAS; i++){
            IavgF[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
            IdiffF[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
            IprevF[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
            IhiF[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
            IlowF[i] = cvCreateImage(cvGetSize(I), IPL_DEPTH_32F, 3 );
            Ilow1[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
            Ilow2[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
            Ilow3[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
            Ihi1[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
            Ihi2[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
            Ihi3[i] = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
            cvZero(IavgF[i]  );
            cvZero(IdiffF[i]  );
            cvZero(IprevF[i]  );
            cvZero(IhiF[i] );
            cvZero(IlowF[i]  );        
            Icount[i] = 0.00001; //Protect against divide by zero
        }
        Iscratch = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
        Iscratch2 = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 3 );
        Igray1 = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
        Igray2 = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
        Igray3 = cvCreateImage( cvGetSize(I), IPL_DEPTH_32F, 1 );
        Imaskt = cvCreateImage( cvGetSize(I), IPL_DEPTH_8U, 1 );
    
        cvZero(Iscratch);
        cvZero(Iscratch2 );
    }
    
    void DeallocateImages()
    {
        for(int i=0; i<NUM_CAMERAS; i++){
            cvReleaseImage(&IavgF[i]);
            cvReleaseImage(&IdiffF[i] );
            cvReleaseImage(&IprevF[i] );
            cvReleaseImage(&IhiF[i] );
            cvReleaseImage(&IlowF[i] );
            cvReleaseImage(&Ilow1[i]  );
            cvReleaseImage(&Ilow2[i]  );
            cvReleaseImage(&Ilow3[i]  );
            cvReleaseImage(&Ihi1[i]   );
            cvReleaseImage(&Ihi2[i]   );
            cvReleaseImage(&Ihi3[i]  );
        }
        cvReleaseImage(&Iscratch);
        cvReleaseImage(&Iscratch2);
    
        cvReleaseImage(&Igray1  );
        cvReleaseImage(&Igray2 );
        cvReleaseImage(&Igray3 );
    
        cvReleaseImage(&Imaskt);
    }
    
    // Accumulate the background statistics for one more frame
    // We accumulate the images, the image differences and the count of images for the 
    //    the routine createModelsfromStats() to work on after we're done accumulating N frames.
    // I        Background image, 3 channel, 8u
    // number    Camera number
    void accumulateBackground(IplImage *I, int number)
    {
        static int first = 1;
        cvCvtScale(I,Iscratch,1,0); //To float;#define cvCvtScale cvConvertScale #define cvScale cvConvertScale
        if (!first){
            cvAcc(Iscratch,IavgF[number]);//将2幅图像相加:IavgF[number]=IavgF[number]+Iscratch,IavgF[]里面装的是时间序列图片的累加
            cvAbsDiff(Iscratch,IprevF[number],Iscratch2);//将2幅图像相减:Iscratch2=abs(Iscratch-IprevF[number]);
            cvAcc(Iscratch2,IdiffF[number]);//IdiffF[]里面装的是图像差的累积和
            Icount[number] += 1.0;//累积的图片帧数计数
        }
        first = 0;
        cvCopy(Iscratch,IprevF[number]);//执行完该函数后,将当前帧数据保存为前一帧数据
    }
    
    // Scale the average difference from the average image high acceptance threshold
    void scaleHigh(float scale, int num)//设定背景建模时的高阈值函数
    {
        cvConvertScale(IdiffF[num],Iscratch,scale); //Converts with rounding and saturation
        cvAdd(Iscratch,IavgF[num],IhiF[num]);//将平均累积图像与误差累积图像缩放scale倍然后再相加
        cvCvtPixToPlane( IhiF[num], Ihi1[num],Ihi2[num],Ihi3[num], 0 );//#define cvCvtPixToPlane cvSplit,且cvSplit是将一个多通道矩阵转换为几个单通道矩阵
    }
    
    // Scale the average difference from the average image low acceptance threshold
    void scaleLow(float scale, int num)//设定背景建模时的低阈值函数
    {
        cvConvertScale(IdiffF[num],Iscratch,scale); //Converts with rounding and saturation
        cvSub(IavgF[num],Iscratch,IlowF[num]);//将平均累积图像与误差累积图像缩放scale倍然后再相减
        cvCvtPixToPlane( IlowF[num], Ilow1[num],Ilow2[num],Ilow3[num], 0 );
    }
    
    //Once you've learned the background long enough, turn it into a background model
    void createModelsfromStats()
    {
        for(int i=0; i<NUM_CAMERAS; i++)
        {
            cvConvertScale(IavgF[i],IavgF[i],(double)(1.0/Icount[i]));//此处为求出累积求和图像的平均值
            cvConvertScale(IdiffF[i],IdiffF[i],(double)(1.0/Icount[i]));//此处为求出累计误差图像的平均值
            cvAddS(IdiffF[i],cvScalar(1.0,1.0,1.0),IdiffF[i]);  //Make sure diff is always something,cvAddS是用于一个数值和一个标量相加
            scaleHigh(HIGH_SCALE_NUM,i);//HIGH_SCALE_NUM初始定义为7,其实就是一个倍数
            scaleLow(LOW_SCALE_NUM,i);//LOW_SCALE_NUM初始定义为6
        }
    }
    
    // Create a binary: 0,255 mask where 255 means forground pixel
    // I        Input image, 3 channel, 8u
    // Imask    mask image to be created, 1 channel 8u
    // num        camera number.
    //
    void backgroundDiff(IplImage *I,IplImage *Imask, int num)  //Mask should be grayscale
    {
        cvCvtScale(I,Iscratch,1,0); //To float;
    //Channel 1
        cvCvtPixToPlane( Iscratch, Igray1,Igray2,Igray3, 0 );
        cvInRange(Igray1,Ilow1[num],Ihi1[num],Imask);//Igray1[]中相应的点在Ilow1[]和Ihi1[]之间时,Imask中相应的点为255(背景符合)
    //Channel 2
        cvInRange(Igray2,Ilow2[num],Ihi2[num],Imaskt);//也就是说对于每一幅图像的绝对值差小于绝对值差平均值的6倍或者大于绝对值差平均值的7倍被认为是前景图像
        cvOr(Imask,Imaskt,Imask);
        //Channel 3
        cvInRange(Igray3,Ilow3[num],Ihi3[num],Imaskt);//这里的固定阈值6和7太不合理了,还好工程后面可以根据实际情况手动调整!
        cvOr(Imask,Imaskt,Imask);
        //Finally, invert the results
        cvSubRS( Imask, cvScalar(255), Imask);//前景用255表示了,背景是用0表示
    }
    

      

    二、codebook算法工作原理

         考虑到简单背景减图法无法对动态的背景建模,有学者就提出了codebook算法。

         该算法为图像中每一个像素点建立一个码本,每个码本可以包括多个码元,每个码元有它的学习时最大最小阈值,检测时的最大最小阈值等成员。在背景建模期间,每当来了一幅新图片,对每个像素点进行码本匹配,也就是说如果该像素值在码本中某个码元的学习阈值内,则认为它离过去该对应点出现过的历史情况偏离不大,通过一定的像素值比较,如果满足条件,此时还可以更新对应点的学习阈值和检测阈值。如果新来的像素值对码本中每个码元都不匹配,则有可能是由于背景是动态的,所以我们需要为其建立一个新的码元,并且设置相应的码元成员变量。因此,在背景学习的过程中,每个像素点可以对应多个码元,这样就可以学到复杂的动态背景。

         关于codebook算法的代码和注释如下:

         cv_yuv_codebook.h文件:

    ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    // Accumulate average and ~std (really absolute difference) image and use this to detect background and foreground
    //
    // Typical way of using this is to:
    //     AllocateImages();
    ////loop for N images to accumulate background differences
    //    accumulateBackground();
    ////When done, turn this into our avg and std model with high and low bounds
    //    createModelsfromStats();
    ////Then use the function to return background in a mask (255 == foreground, 0 == background)
    //    backgroundDiff(IplImage *I,IplImage *Imask, int num);
    ////Then tune the high and low difference from average image background acceptance thresholds
    //    float scalehigh,scalelow; //Set these, defaults are 7 and 6. Note: scalelow is how many average differences below average
    //    scaleHigh(scalehigh);
    //    scaleLow(scalelow);
    ////That is, change the scale high and low bounds for what should be background to make it work.
    ////Then continue detecting foreground in the mask image
    //    backgroundDiff(IplImage *I,IplImage *Imask, int num);
    //
    //NOTES: num is camera number which varies from 0 ... NUM_CAMERAS - 1.  Typically you only have one camera, but this routine allows
    //          you to index many.
    //
    #ifndef AVGSEG_
    #define AVGSEG_
    
    
    #include "cv.h"                // define all of the opencv classes etc.
    #include "highgui.h"
    #include "cxcore.h"
    
    //IMPORTANT DEFINES:
    #define NUM_CAMERAS   1              //This function can handle an array of cameras
    #define HIGH_SCALE_NUM 7.0            //How many average differences from average image on the high side == background
    #define LOW_SCALE_NUM 6.0        //How many average differences from average image on the low side == background
    
    void AllocateImages(IplImage *I);
    void DeallocateImages();
    void accumulateBackground(IplImage *I, int number=0);
    void scaleHigh(float scale = HIGH_SCALE_NUM, int num = 0);
    void scaleLow(float scale = LOW_SCALE_NUM, int num = 0);
    void createModelsfromStats();
    void backgroundDiff(IplImage *I,IplImage *Imask, int num = 0);
    
    #endif
    

       cv_yuv_codebook.cpp文件:

    ////////YUV CODEBOOK
    // Gary Bradski, July 14, 2005
    
    
    #include "stdafx.h"
    #include "cv_yuv_codebook.h"
    
    //GLOBALS FOR ALL CAMERA MODELS
    
    //For connected components:
    int CVCONTOUR_APPROX_LEVEL = 2;   // Approx.threshold - the bigger it is, the simpler is the boundary
    int CVCLOSE_ITR = 1;                // How many iterations of erosion and/or dialation there should be
    //#define CVPERIMSCALE 4            // image (width+height)/PERIMSCALE.  If contour lenght < this, delete that contour
    
    //For learning background
    
    //Just some convienience macros
    #define CV_CVX_WHITE    CV_RGB(0xff,0xff,0xff)
    #define CV_CVX_BLACK    CV_RGB(0x00,0x00,0x00)
    
    
    ///////////////////////////////////////////////////////////////////////////////////
    // int updateCodeBook(uchar *p, codeBook &c, unsigned cbBounds)
    // Updates the codebook entry with a new data point
    //
    // p            Pointer to a YUV pixel
    // c            Codebook for this pixel
    // cbBounds        Learning bounds for codebook (Rule of thumb: 10)
    // numChannels    Number of color channels we're learning
    //
    // NOTES:
    //        cvBounds must be of size cvBounds[numChannels]
    //
    // RETURN
    //    codebook index
    int cvupdateCodeBook(uchar *p, codeBook &c, unsigned *cbBounds, int numChannels)
    {
    
        if(c.numEntries == 0) c.t = 0;//说明每个像素如果遍历了的话至少对应一个码元
        c.t += 1;        //Record learning event,遍历该像素点的次数加1
    //SET HIGH AND LOW BOUNDS
        int n;
        unsigned int high[3],low[3];
        for(n=0; n<numChannels; n++)//为该像素点的每个通道设置最大阈值和最小阈值,后面用来更新学习的高低阈值时有用
        {
            high[n] = *(p+n)+*(cbBounds+n);
            if(high[n] > 255) high[n] = 255;
            low[n] = *(p+n)-*(cbBounds+n);
            if(low[n] < 0) low[n] = 0;
        }
        int matchChannel;
        //SEE IF THIS FITS AN EXISTING CODEWORD
        int i;
        for(i=0; i<c.numEntries; i++)//需要对所有的码元进行扫描
        {
            matchChannel = 0;
            for(n=0; n<numChannels; n++)
            {
                //这个地方要非常小心,if条件不是下面表达的
    //if((c.cb[i]->min[n]-c.cb[i]->learnLow[n] <= *(p+n)) && (*(p+n) <= c.cb[i]->max[n]+c.cb[i]->learnHigh[n]))
    //原因是因为在每次建立一个新码元的时候,learnHigh[n]和learnLow[n]的范围就在max[n]和min[n]上扩展了cbBounds[n],所以说
    //learnHigh[n]和learnLow[n]的变化范围实际上比max[n]和min[n]的大
                if((c.cb[i]->learnLow[n] <= *(p+n)) && (*(p+n) <= c.cb[i]->learnHigh[n])) //Found an entry for this channel
                {
                    matchChannel++;
                }
            }
            if(matchChannel == numChannels) //If an entry was found over all channels,找到了该元素此刻对应的码元
            {
                c.cb[i]->t_last_update = c.t;
                //adjust this codeword for the first channel
    //更新每个码元的最大最小阈值,因为这2个阈值在后面的前景分离过程要用到
                for(n=0; n<numChannels; n++)
                {
                    if(c.cb[i]->max[n] < *(p+n))//用该点的像素值更新该码元的最大值,所以max[n]保存的是实际上历史出现过的最大像素值
                    {
                        c.cb[i]->max[n] = *(p+n);//因为这个for语句是在匹配成功了的条件阈值下的,所以一般来说改变后的max[n]和min[n]
    //也不会过学习的高低阈值,并且学习的高低阈值也一直在缓慢变化  
                    }
                    else if(c.cb[i]->min[n] > *(p+n))//用该点的像素值更新该码元的最小值,所以min[n]保存的是实际上历史出现过的最小像素值
                    {
                        c.cb[i]->min[n] = *(p+n);
                    }
                }
                break;//一旦找到了该像素的一个码元后就不用继续往后找了,加快算法速度。因为最多只有一个码元与之对应
            }
        }
    
        //OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
        for(int s=0; s<c.numEntries; s++)
        {
            //This garbage is to track which codebook entries are going stale
            int negRun = c.t - c.cb[s]->t_last_update;//negRun表示码元没有更新的时间间隔
            if(c.cb[s]->stale < negRun) c.cb[s]->stale = negRun;//更新每个码元的statle
        }
    
    
        //ENTER A NEW CODE WORD IF NEEDED
        if(i == c.numEntries)  //No existing code word found, make a new one,只有当该像素码本中的所有码元都不符合要求时才满足if条件
        {
            code_element **foo = new code_element* [c.numEntries+1];//创建一个新的码元序列
            for(int ii=0; ii<c.numEntries; ii++)
            {
                foo[ii] = c.cb[ii];//将码本前面所有的码元地址赋给foo
            }
            foo[c.numEntries] = new code_element;//创建一个新码元并赋给foo指针的下一个空位
            if(c.numEntries) delete [] c.cb;//?
            c.cb = foo;
            for(n=0; n<numChannels; n++)//给新建立的码元结构体元素赋值
            {
                c.cb[c.numEntries]->learnHigh[n] = high[n];//当建立一个新码元时,用当前值附近cbBounds范围作为码元box的学习阈值
                c.cb[c.numEntries]->learnLow[n] = low[n];
                c.cb[c.numEntries]->max[n] = *(p+n);//当建立一个新码元时,用当前值作为码元box的最大最小边界值
                c.cb[c.numEntries]->min[n] = *(p+n);
            }
            c.cb[c.numEntries]->t_last_update = c.t;
            c.cb[c.numEntries]->stale = 0;//因为刚建立,所有为0
            c.numEntries += 1;//码元的个数加1
        }
    
        //SLOWLY ADJUST LEARNING BOUNDS
        for(n=0; n<numChannels; n++)//每次遍历该像素点就将每个码元的学习最大阈值变大,最小阈值变小,但是都是缓慢变化的
        {                           //如果是新建立的码元,则if条件肯定不满足
            if(c.cb[i]->learnHigh[n] < high[n]) c.cb[i]->learnHigh[n] += 1;                
            if(c.cb[i]->learnLow[n] > low[n]) c.cb[i]->learnLow[n] -= 1;
        }
    
        return(i);//返回所找到码本中码元的索引
    }
    
    ///////////////////////////////////////////////////////////////////////////////////
    // uchar cvbackgroundDiff(uchar *p, codeBook &c, int minMod, int maxMod)
    // Given a pixel and a code book, determine if the pixel is covered by the codebook
    //
    // p        pixel pointer (YUV interleaved)
    // c        codebook reference
    // numChannels  Number of channels we are testing
    // maxMod    Add this (possibly negative) number onto max level when code_element determining if new pixel is foreground
    // minMod    Subract this (possible negative) number from min level code_element when determining if pixel is foreground
    //
    // NOTES:
    // minMod and maxMod must have length numChannels, e.g. 3 channels => minMod[3], maxMod[3].
    //
    // Return
    // 0 => background, 255 => foreground
    uchar cvbackgroundDiff(uchar *p, codeBook &c, int numChannels, int *minMod, int *maxMod)
    {
        int matchChannel;
        //SEE IF THIS FITS AN EXISTING CODEWORD
        int i;
        for(i=0; i<c.numEntries; i++)
        {
            matchChannel = 0;
            for(int n=0; n<numChannels; n++)
            {
                if((c.cb[i]->min[n] - minMod[n] <= *(p+n)) && (*(p+n) <= c.cb[i]->max[n] + maxMod[n]))
                {
                    matchChannel++; //Found an entry for this channel
                }
                else
                {
                    break;//加快速度,当一个通道不满足时提前结束
                }
            }
            if(matchChannel == numChannels)
            {
                break; //Found an entry that matched all channels,加快速度,当一个码元找到时,提前结束
            }
        }
        if(i >= c.numEntries) return(255);//255代表前景,因为所有的码元都不满足条件
        return(0);//0代表背景,因为至少有一个码元满足条件
    }
    
    
    //UTILITES/////////////////////////////////////////////////////////////////////////////////////
    /////////////////////////////////////////////////////////////////////////////////
    //int clearStaleEntries(codeBook &c)
    // After you've learned for some period of time, periodically call this to clear out stale codebook entries
    //
    //c        Codebook to clean up
    //
    // Return
    // number of entries cleared
    int cvclearStaleEntries(codeBook &c)//对每一个码本进行检查
    {
        int staleThresh = c.t>>1;//阈值设置为访问该码元的次数的一半,经验值
        int *keep = new int [c.numEntries];
        int keepCnt = 0;
        //SEE WHICH CODEBOOK ENTRIES ARE TOO STALE
        for(int i=0; i<c.numEntries; i++)
        {
            if(c.cb[i]->stale > staleThresh)//当在背景建模期间有一半的时间内,codebook的码元条目没有被访问,则该条目将被删除
                keep[i] = 0; //Mark for destruction
            else
            {
                keep[i] = 1; //Mark to keep,为1时,该码本的条目将被保留
                keepCnt += 1;//keepCnt记录了要保持的codebook的数目
            }
        }
        //KEEP ONLY THE GOOD
        c.t = 0;                        //Full reset on stale tracking
        code_element **foo = new code_element* [keepCnt];//重新建立一个码本的双指针
        int k=0;
        for(int ii=0; ii<c.numEntries; ii++)
        {
            if(keep[ii])
            {
                foo[k] = c.cb[ii];//要保持该码元的话就要把码元结构体复制到fook
                foo[k]->stale = 0;        //We have to refresh these entries for next clearStale,不被访问的累加器stale重新赋值0
                foo[k]->t_last_update = 0;//
                k++;
            }
        }
        //CLEAN UP
        delete [] keep;
        delete [] c.cb;
        c.cb = foo;
        int numCleared = c.numEntries - keepCnt;//numCleared中保存的是被删除码元的个数
        c.numEntries = keepCnt;//最后新的码元数为保存下来码元的个数
        return(numCleared);//返回被删除的码元个数
    }
    
    /////////////////////////////////////////////////////////////////////////////////
    //int countSegmentation(codeBook *c, IplImage *I)
    //
    //Count how many pixels are detected as foreground
    // c    Codebook
    // I    Image (yuv, 24 bits)
    // numChannels  Number of channels we are testing
    // maxMod    Add this (possibly negative) number onto max level when code_element determining if new pixel is foreground
    // minMod    Subract this (possible negative) number from min level code_element when determining if pixel is foreground
    //
    // NOTES:
    // minMod and maxMod must have length numChannels, e.g. 3 channels => minMod[3], maxMod[3].
    //
    //Return
    // Count of fg pixels
    //
    int cvcountSegmentation(codeBook *c, IplImage *I, int numChannels, int *minMod, int *maxMod)
    {
        int count = 0,i;
        uchar *pColor;
        int imageLen = I->width * I->height;
    
        //GET BASELINE NUMBER OF FG PIXELS FOR Iraw
        pColor = (uchar *)((I)->imageData);
        for(i=0; i<imageLen; i++)
        {
            if(cvbackgroundDiff(pColor, c[i], numChannels, minMod, maxMod))//对每一个像素点都要检测其是否为前景,如果是的话,计数器count就加1
                count++;
            pColor += 3;
        }
        return(count);//返回图像I的前景像素点的个数
    }
    
    
    ///////////////////////////////////////////////////////////////////////////////////////////
    //void cvconnectedComponents(IplImage *mask, int poly1_hull0, float perimScale, int *num, CvRect *bbs, CvPoint *centers)
    // This cleans up the forground segmentation mask derived from calls to cvbackgroundDiff
    //
    // mask            Is a grayscale (8 bit depth) "raw" mask image which will be cleaned up
    //
    // OPTIONAL PARAMETERS:
    // poly1_hull0    If set, approximate connected component by (DEFAULT) polygon, or else convex hull (0)
    // perimScale     Len = image (width+height)/perimScale.  If contour len < this, delete that contour (DEFAULT: 4)
    // num            Maximum number of rectangles and/or centers to return, on return, will contain number filled (DEFAULT: NULL)
    // bbs            Pointer to bounding box rectangle vector of length num.  (DEFAULT SETTING: NULL)
    // centers        Pointer to contour centers vectore of length num (DEFULT: NULL)
    //
    void cvconnectedComponents(IplImage *mask, int poly1_hull0, float perimScale, int *num, CvRect *bbs, CvPoint *centers)
    {
    static CvMemStorage*    mem_storage    = NULL;
    static CvSeq*            contours    = NULL;
    //CLEAN UP RAW MASK
    //开运算作用:平滑轮廓,去掉细节,断开缺口
        cvMorphologyEx( mask, mask, NULL, NULL, CV_MOP_OPEN, CVCLOSE_ITR );//对输入mask进行开操作,CVCLOSE_ITR为开操作的次数,输出为mask图像
    //闭运算作用:平滑轮廓,连接缺口
        cvMorphologyEx( mask, mask, NULL, NULL, CV_MOP_CLOSE, CVCLOSE_ITR );//对输入mask进行闭操作,CVCLOSE_ITR为闭操作的次数,输出为mask图像
    
    //FIND CONTOURS AROUND ONLY BIGGER REGIONS
        if( mem_storage==NULL ) mem_storage = cvCreateMemStorage(0);
        else cvClearMemStorage(mem_storage);
    
        //CV_RETR_EXTERNAL=0是在types_c.h中定义的,CV_CHAIN_APPROX_SIMPLE=2也是在该文件中定义的
        CvContourScanner scanner = cvStartFindContours(mask,mem_storage,sizeof(CvContour),CV_RETR_EXTERNAL,CV_CHAIN_APPROX_SIMPLE);
        CvSeq* c;
        int numCont = 0;
        while( (c = cvFindNextContour( scanner )) != NULL )
        {
            double len = cvContourPerimeter( c );
            double q = (mask->height + mask->width) /perimScale;   //calculate perimeter len threshold
            if( len < q ) //Get rid of blob if it's perimeter is too small
            {
                cvSubstituteContour( scanner, NULL );
            }
            else //Smooth it's edges if it's large enough
            {
                CvSeq* c_new;
                if(poly1_hull0) //Polygonal approximation of the segmentation
                    c_new = cvApproxPoly(c,sizeof(CvContour),mem_storage,CV_POLY_APPROX_DP, CVCONTOUR_APPROX_LEVEL,0);
                else //Convex Hull of the segmentation
                    c_new = cvConvexHull2(c,mem_storage,CV_CLOCKWISE,1);
                cvSubstituteContour( scanner, c_new );
                numCont++;
            }
        }
        contours = cvEndFindContours( &scanner );
    
    // PAINT THE FOUND REGIONS BACK INTO THE IMAGE
        cvZero( mask );
        IplImage *maskTemp;
        //CALC CENTER OF MASS AND OR BOUNDING RECTANGLES
        if(num != NULL)
        {
            int N = *num, numFilled = 0, i=0;
            CvMoments moments;
            double M00, M01, M10;
            maskTemp = cvCloneImage(mask);
            for(i=0, c=contours; c != NULL; c = c->h_next,i++ )
            {
                if(i < N) //Only process up to *num of them
                {
                    cvDrawContours(maskTemp,c,CV_CVX_WHITE, CV_CVX_WHITE,-1,CV_FILLED,8);
                    //Find the center of each contour
                    if(centers != NULL)
                    {
                        cvMoments(maskTemp,&moments,1);
                        M00 = cvGetSpatialMoment(&moments,0,0);
                        M10 = cvGetSpatialMoment(&moments,1,0);
                        M01 = cvGetSpatialMoment(&moments,0,1);
                        centers[i].x = (int)(M10/M00);
                        centers[i].y = (int)(M01/M00);
                    }
                    //Bounding rectangles around blobs
                    if(bbs != NULL)
                    {
                        bbs[i] = cvBoundingRect(c);
                    }
                    cvZero(maskTemp);
                    numFilled++;
                }
                //Draw filled contours into mask
                cvDrawContours(mask,c,CV_CVX_WHITE,CV_CVX_WHITE,-1,CV_FILLED,8); //draw to central mask
            } //end looping over contours
            *num = numFilled;
            cvReleaseImage( &maskTemp);
        }
        //ELSE JUST DRAW PROCESSED CONTOURS INTO THE MASK
        else
        {
            for( c=contours; c != NULL; c = c->h_next )
            {
                cvDrawContours(mask,c,CV_CVX_WHITE, CV_CVX_BLACK,-1,CV_FILLED,8);
            }
        }
    }
    

      

    三、2种算法进行对比。

         Learning Opencv的作者将这两种算法做了下对比,用的视频是有风吹动树枝的动态背景,一段时间过后的前景是视频中移动的手。

         当然在这个工程中,作者除了体现上述简单背景差法和codobook算法的一些原理外,还引入了很多细节来优化前景分割效果。比如说误差计算时的方差和协方差计算加速方法,消除像素点内长时间没有被访问过的码元,对检测到的粗糙原始前景图用连通域分析法清楚噪声,其中引入了形态学中的几种操作,使用多边形拟合前景轮廓等细节处理。

         在看作者代码前,最好先看下下面几个变量的物理含义。

         maxMod[n]:用训练好的背景模型进行前景检测时用到,判断点是否小于max[n] + maxMod[n])。

         minMod[n]:用训练好的背景模型进行前景检测时用到,判断点是否小于min[n] -minMod[n])。

         cbBounds*:训练背景模型时用到,可以手动输入该参数,这个数主要是配合high[n]和low[n]来用的。

         learnHigh[n]:背景学习过程中当一个新像素来时用来判断是否在已有的码元中,是阈值的上界部分。

         learnLow[n]:背景学习过程中当一个新像素来时用来判断是否在已有的码元中,是阈值的下界部分。

         max[n]: 背景学习过程中每个码元学习到的最大值,在前景分割时配合maxMod[n]用的。

         min[n]: 背景学习过程中每个码元学习到的最小值,在前景分割时配合minMod[n]用的。

         high[n]:背景学习过程中用来调整learnHigh[n]的,如果learnHigh[n]<high[n],则learnHigh[n]缓慢加1

         low[n]: 背景学习过程中用来调整learnLow[n]的,如果learnLow[n]>Low[n],则learnLow[缓慢减1

         该工程带主函数部分代码和注释如下:

    #include "stdafx.h"
    
    #include "cv.h"
    #include "highgui.h"
    #include <stdio.h>
    #include <stdlib.h>
    #include <ctype.h>
    #include "avg_background.h"
    #include "cv_yuv_codebook.h"
    
    //VARIABLES for CODEBOOK METHOD:
    codeBook *cB;   //This will be our linear model of the image, a vector 
                    //of lengh = height*width
    int maxMod[CHANNELS];    //Add these (possibly negative) number onto max 
                            // level when code_element determining if new pixel is foreground
    int minMod[CHANNELS];     //Subract these (possible negative) number from min 
                            //level code_element when determining if pixel is foreground
    unsigned cbBounds[CHANNELS]; //Code Book bounds for learning
    bool ch[CHANNELS];        //This sets what channels should be adjusted for background bounds
    int nChannels = CHANNELS;
    int imageLen = 0;
    uchar *pColor; //YUV pointer
    
    void help() {
        printf("
    Learn background and find foreground using simple average and average difference learning method:
    "
            "
    USAGE:
      ch9_background startFrameCollection# endFrameCollection# [movie filename, else from camera]
    "
            "If from AVI, then optionally add HighAvg, LowAvg, HighCB_Y LowCB_Y HighCB_U LowCB_U HighCB_V LowCB_V
    
    "
            "***Keep the focus on the video windows, NOT the consol***
    
    "
            "INTERACTIVE PARAMETERS:
    "
            "	ESC,q,Q  - quit the program
    "
            "	h    - print this help
    "
            "	p    - pause toggle
    "
            "	s    - single step
    "
            "	r    - run mode (single step off)
    "
            "=== AVG PARAMS ===
    "
            "	-    - bump high threshold UP by 0.25
    "
            "	=    - bump high threshold DOWN by 0.25
    "
            "	[    - bump low threshold UP by 0.25
    "
            "	]    - bump low threshold DOWN by 0.25
    "
            "=== CODEBOOK PARAMS ===
    "
            "	y,u,v- only adjust channel 0(y) or 1(u) or 2(v) respectively
    "
            "	a    - adjust all 3 channels at once
    "
            "	b    - adjust both 2 and 3 at once
    "
            "	i,o    - bump upper threshold up,down by 1
    "
            "	k,l    - bump lower threshold up,down by 1
    "
            );
    }
    
    //
    //USAGE:  ch9_background startFrameCollection# endFrameCollection# [movie filename, else from camera]
    //If from AVI, then optionally add HighAvg, LowAvg, HighCB_Y LowCB_Y HighCB_U LowCB_U HighCB_V LowCB_V
    //
    int main(int argc, char** argv)
    {
         IplImage* rawImage = 0, *yuvImage = 0; //yuvImage is for codebook method
        IplImage *ImaskAVG = 0,*ImaskAVGCC = 0;
        IplImage *ImaskCodeBook = 0,*ImaskCodeBookCC = 0;
        CvCapture* capture = 0;
    
        int startcapture = 1;
        int endcapture = 30;
        int c,n;
    
        maxMod[0] = 3;  //Set color thresholds to default values
        minMod[0] = 10;
        maxMod[1] = 1;
        minMod[1] = 1;
        maxMod[2] = 1;
        minMod[2] = 1;
        float scalehigh = HIGH_SCALE_NUM;//默认值为6
        float scalelow = LOW_SCALE_NUM;//默认值为7
        
        if(argc < 3) {//只有1个参数或者没有参数时,输出错误,并提示help信息,因为该程序本身就算进去了一个参数
            printf("ERROR: Too few parameters
    ");
            help();
        }else{//至少有2个参数才算正确
            if(argc == 3){//输入为2个参数的情形是从摄像头输入数据
                printf("Capture from Camera
    ");
                capture = cvCaptureFromCAM( 0 );
            }
            else {//输入大于2个参数时是从文件中读入视频数据
                printf("Capture from file %s
    ",argv[3]);//第三个参数是读入视频文件的文件名
        //        capture = cvCaptureFromFile( argv[3] );
                capture = cvCreateFileCapture( argv[3] );
                if(!capture) { printf("Couldn't open %s
    ",argv[3]); return -1;}//读入视频文件失败
            }
            if(isdigit(argv[1][0])) { //Start from of background capture
                startcapture = atoi(argv[1]);//第一个参数表示视频开始的背景训练时的帧,默认是1
                printf("startcapture = %d
    ",startcapture);
            }
            if(isdigit(argv[2][0])) { //End frame of background capture
                endcapture = atoi(argv[2]);//第二个参数表示的结束背景训练时的,默认为30
                printf("endcapture = %d
    "); 
            }
            if(argc > 4){ //See if parameters are set from command line,输入多于4个参数表示后面的算法中用到的参数在这里直接输入
                //FOR AVG MODEL
                if(argc >= 5){
                    if(isdigit(argv[4][0])){
                        scalehigh = (float)atoi(argv[4]);
                    }
                }
                if(argc >= 6){
                    if(isdigit(argv[5][0])){
                        scalelow = (float)atoi(argv[5]);
                    }
                }
                //FOR CODEBOOK MODEL, CHANNEL 0
                if(argc >= 7){
                    if(isdigit(argv[6][0])){
                        maxMod[0] = atoi(argv[6]);
                    }
                }
                if(argc >= 8){
                    if(isdigit(argv[7][0])){
                        minMod[0] = atoi(argv[7]);
                    }
                }
                //Channel 1
                if(argc >= 9){
                    if(isdigit(argv[8][0])){
                        maxMod[1] = atoi(argv[8]);
                    }
                }
                if(argc >= 10){
                    if(isdigit(argv[9][0])){
                        minMod[1] = atoi(argv[9]);
                    }
                }
                //Channel 2
                if(argc >= 11){
                    if(isdigit(argv[10][0])){
                        maxMod[2] = atoi(argv[10]);
                    }
                }
                if(argc >= 12){
                    if(isdigit(argv[11][0])){
                        minMod[2] = atoi(argv[11]);
                    }
                }
            }
        }
    
        //MAIN PROCESSING LOOP:
        bool pause = false;
        bool singlestep = false;
    
        if( capture )
        {
          cvNamedWindow( "Raw", 1 );//原始视频图像
            cvNamedWindow( "AVG_ConnectComp",1);//平均法连通区域分析后的图像
            cvNamedWindow( "ForegroundCodeBook",1);//codebook法后图像
            cvNamedWindow( "CodeBook_ConnectComp",1);//codebook法连通区域分析后的图像
             cvNamedWindow( "ForegroundAVG",1);//平均法后图像
            int i = -1;
            
            for(;;)
            {
                    if(!pause){
    //                if( !cvGrabFrame( capture ))
    //                    break;
    //                rawImage = cvRetrieveFrame( capture );
                    rawImage = cvQueryFrame( capture );
                    ++i;//count it
    //                printf("%d
    ",i);
                    if(!rawImage) 
                        break;
                    //REMOVE THIS FOR GENERAL OPERATION, JUST A CONVIENIENCE WHEN RUNNING WITH THE SMALL tree.avi file
                    if(i == 56){//程序开始运行几十帧后自动暂停,以便后面好手动调整参数
                        pause = 1;
                        printf("
    
    Video paused for your convienience at frame 50 to work with demo
    "
                        "You may adjust parameters, single step or continue running
    
    ");
                        help();
                    }
                }
                if(singlestep){
                    pause = true;
                }
                //First time:
                if(0 == i) {
                    printf("
     . . . wait for it . . .
    "); //Just in case you wonder why the image is white at first
                    //AVG METHOD ALLOCATION
                    AllocateImages(rawImage);//为算法的使用分配内存
                    scaleHigh(scalehigh);//设定背景建模时的高阈值函数
                    scaleLow(scalelow);//设定背景建模时的低阈值函数
                    ImaskAVG = cvCreateImage( cvGetSize(rawImage), IPL_DEPTH_8U, 1 );
                    ImaskAVGCC = cvCreateImage( cvGetSize(rawImage), IPL_DEPTH_8U, 1 );
                    cvSet(ImaskAVG,cvScalar(255));
                    //CODEBOOK METHOD ALLOCATION:
                    yuvImage = cvCloneImage(rawImage);
                    ImaskCodeBook = cvCreateImage( cvGetSize(rawImage), IPL_DEPTH_8U, 1 );//用来装前景背景图的,当然只要一个通道的图像即可
                    ImaskCodeBookCC = cvCreateImage( cvGetSize(rawImage), IPL_DEPTH_8U, 1 );
                    cvSet(ImaskCodeBook,cvScalar(255));
                    imageLen = rawImage->width*rawImage->height;
                    cB = new codeBook [imageLen];//创建一个码本cB数组,每个像素对应一个码本
                    for(int f = 0; f<imageLen; f++)
                    {
                         cB[f].numEntries = 0;//每个码本的初始码元个数赋值为0
                    }
                    for(int nc=0; nc<nChannels;nc++)
                    {
                        cbBounds[nc] = 10; //Learning bounds factor,初始值为10
                    }
                    ch[0] = true; //Allow threshold setting simultaneously for all channels
                    ch[1] = true;
                    ch[2] = true;
                }
                //If we've got an rawImage and are good to go:                
                if( rawImage )
                {
                    cvCvtColor( rawImage, yuvImage, CV_BGR2YCrCb );//YUV For codebook method
                    //This is where we build our background model
                    if( !pause && i >= startcapture && i < endcapture  ){
                        //LEARNING THE AVERAGE AND AVG DIFF BACKGROUND
                        accumulateBackground(rawImage);//平均法累加过程
                        //LEARNING THE CODEBOOK BACKGROUND
                        pColor = (uchar *)((yuvImage)->imageData);//yuvImage矩阵的首位置
                        for(int c=0; c<imageLen; c++)
                        {
                            cvupdateCodeBook(pColor, cB[c], cbBounds, nChannels);//codebook算法建模过程
                            pColor += 3;
                        }
                    }
                    //When done, create the background model
                    if(i == endcapture){
                        createModelsfromStats();//平均法建模过程
                    }
                    //Find the foreground if any
                    if(i >= endcapture) {//endcapture帧后开始检测前景
                        //FIND FOREGROUND BY AVG METHOD:
                        backgroundDiff(rawImage,ImaskAVG);
                        cvCopy(ImaskAVG,ImaskAVGCC);
                        cvconnectedComponents(ImaskAVGCC);//平均法中的前景清除
                        //FIND FOREGROUND BY CODEBOOK METHOD
                        uchar maskPixelCodeBook;
                        pColor = (uchar *)((yuvImage)->imageData); //3 channel yuv image
                        uchar *pMask = (uchar *)((ImaskCodeBook)->imageData); //1 channel image
                        for(int c=0; c<imageLen; c++)
                        {
                             maskPixelCodeBook = cvbackgroundDiff(pColor, cB[c], nChannels, minMod, maxMod);//前景返回255,背景返回0
                            *pMask++ = maskPixelCodeBook;//将前景检测的结果返回到ImaskCodeBook中
                            pColor += 3;
                        }
                        //This part just to visualize bounding boxes and centers if desired
                        cvCopy(ImaskCodeBook,ImaskCodeBookCC);    
                        cvconnectedComponents(ImaskCodeBookCC);//codebook算法中的前景清除
                    }
                    //Display
                       cvShowImage( "Raw", rawImage );//除了这张是彩色图外,另外4张都是黑白图
                    cvShowImage( "AVG_ConnectComp",ImaskAVGCC);
                       cvShowImage( "ForegroundAVG",ImaskAVG);
                     cvShowImage( "ForegroundCodeBook",ImaskCodeBook);
                     cvShowImage( "CodeBook_ConnectComp",ImaskCodeBookCC);
    
                    //USER INPUT:
                     c = cvWaitKey(10)&0xFF;
                    //End processing on ESC, q or Q
                    if(c == 27 || c == 'q' | c == 'Q')
                        break;
                    //Else check for user input
                    switch(c)
                    {
                        case 'h':
                            help();
                            break;
                        case 'p':
                            pause ^= 1;
                            break;
                        case 's':
                            singlestep = 1;
                            pause = false;
                            break;
                        case 'r':
                            pause = false;
                            singlestep = false;
                            break;
                        //AVG BACKROUND PARAMS
                        case '-'://调整scalehigh的参数,scalehigh的物理意义是误差累加的影响因子,其倒数为缩放倍数,加0.25实际上是减小其影响力
                            if(i > endcapture){
                                scalehigh += 0.25;
                                printf("AVG scalehigh=%f
    ",scalehigh);
                                scaleHigh(scalehigh);
                            }
                            break;
                        case '='://scalehigh减少2.5是增加其影响力
                            if(i > endcapture){
                                scalehigh -= 0.25;
                                printf("AVG scalehigh=%f
    ",scalehigh);
                                scaleHigh(scalehigh);
                            }
                            break;
                        case '[':
                            if(i > endcapture){//设置设定背景建模时的低阈值函数,同上
                                scalelow += 0.25;
                                printf("AVG scalelow=%f
    ",scalelow);
                                scaleLow(scalelow);
                            }
                            break;
                        case ']':
                            if(i > endcapture){
                                scalelow -= 0.25;
                                printf("AVG scalelow=%f
    ",scalelow);
                                scaleLow(scalelow);
                            }
                            break;
                    //CODEBOOK PARAMS
                    case 'y':
                    case '0'://激活y通道
                            ch[0] = 1;
                            ch[1] = 0;
                            ch[2] = 0;
                            printf("CodeBook YUV Channels active: ");
                            for(n=0; n<nChannels; n++)
                                    printf("%d, ",ch[n]);
                            printf("
    ");
                            break;
                    case 'u':
                    case '1'://激活u通道
                            ch[0] = 0;
                            ch[1] = 1;
                            ch[2] = 0;
                            printf("CodeBook YUV Channels active: ");
                            for(n=0; n<nChannels; n++)
                                    printf("%d, ",ch[n]);
                            printf("
    ");
                            break;
                    case 'v':
                    case '2'://激活v通道
                            ch[0] = 0;
                            ch[1] = 0;
                            ch[2] = 1;
                            printf("CodeBook YUV Channels active: ");
                            for(n=0; n<nChannels; n++)
                                    printf("%d, ",ch[n]);
                            printf("
    ");
                            break;
                    case 'a': //All
                    case '3'://激活所有通道
                            ch[0] = 1;
                            ch[1] = 1;
                            ch[2] = 1;
                            printf("CodeBook YUV Channels active: ");
                            for(n=0; n<nChannels; n++)
                                    printf("%d, ",ch[n]);
                            printf("
    ");
                            break;
                    case 'b':  //both u and v together
                            ch[0] = 0;
                            ch[1] = 1;
                            ch[2] = 1;
                            printf("CodeBook YUV Channels active: ");
                            for(n=0; n<nChannels; n++)
                                    printf("%d, ",ch[n]);
                            printf("
    ");
                            break;
                    case 'i': //modify max classification bounds (max bound goes higher)
                        for(n=0; n<nChannels; n++){//maxMod和minMod是最大值和最小值跳动的阈值
                            if(ch[n])
                                maxMod[n] += 1;
                            printf("%.4d,",maxMod[n]);
                        }
                        printf(" CodeBook High Side
    ");
                        break;
                    case 'o': //modify max classification bounds (max bound goes lower)
                        for(n=0; n<nChannels; n++){
                            if(ch[n])
                                maxMod[n] -= 1;
                            printf("%.4d,",maxMod[n]);
                        }
                        printf(" CodeBook High Side
    ");
                        break;
                    case 'k': //modify min classification bounds (min bound goes lower)
                        for(n=0; n<nChannels; n++){
                            if(ch[n])
                                minMod[n] += 1;
                            printf("%.4d,",minMod[n]);
                        }
                        printf(" CodeBook Low Side
    ");
                        break;
                    case 'l': //modify min classification bounds (min bound goes higher)
                        for(n=0; n<nChannels; n++){
                            if(ch[n])
                                minMod[n] -= 1;
                            printf("%.4d,",minMod[n]);
                        }
                        printf(" CodeBook Low Side
    ");
                        break;
                    }
                    
                }
            }        
          cvReleaseCapture( &capture );
          cvDestroyWindow( "Raw" );
            cvDestroyWindow( "ForegroundAVG" );
            cvDestroyWindow( "AVG_ConnectComp");
            cvDestroyWindow( "ForegroundCodeBook");
            cvDestroyWindow( "CodeBook_ConnectComp");
            DeallocateImages();//释放平均法背景建模过程中用到的内存
            if(yuvImage) cvReleaseImage(&yuvImage);
            if(ImaskAVG) cvReleaseImage(&ImaskAVG);
            if(ImaskAVGCC) cvReleaseImage(&ImaskAVGCC);
            if(ImaskCodeBook) cvReleaseImage(&ImaskCodeBook);
            if(ImaskCodeBookCC) cvReleaseImage(&ImaskCodeBookCC);
            delete [] cB;
        }
        else{ printf("
    
    Darn, Something wrong with the parameters
    
    "); help();
        }
        return 0;
    }
    

      

     运行结果截图如下:

         训练过程视频原图截图:

      测试过程视频原图截图:

     前景检测过程截图:

     

    可以看到左边2幅截图的对比,codebook算法的效果明显比简单减图法要好,手型比较清晰些。

     

     四、参考文献

          Bradski, G. and A. Kaehler (2008). Learning OpenCV: Computer vision with the OpenCV library, O'Reilly Media.

  • 相关阅读:
    src和href属性的区别
    cookie, sessionStorage和localStorage的区别
    C# base64 转 byte[]
    C# 中字符串string和字节数组byte[]的转换
    C#获取当前路径的七种方法 【转载】
    C# 读取大文件 (可以读取3GB大小的txt文件)
    伪装文件到图片工具
    nmap命令扫描存活主机
    .deb文件如何安装,Ubuntu下deb安装方法图文详解
    kali修改更新源及更新
  • 原文地址:https://www.cnblogs.com/molakejin/p/5684882.html
Copyright © 2011-2022 走看看