zoukankan      html  css  js  c++  java
  • opencv人脸识别代码

     opencv人脸识别C++代码

    /* 
     * Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>. 
     * Released to public domain under terms of the BSD Simplified license. 
     * 
     * Redistribution and use in source and binary forms, with or without 
     * modification, are permitted provided that the following conditions are met: 
     *   * Redistributions of source code must retain the above copyright 
     *     notice, this list of conditions and the following disclaimer. 
     *   * Redistributions in binary form must reproduce the above copyright 
     *     notice, this list of conditions and the following disclaimer in the 
     *     documentation and/or other materials provided with the distribution. 
     *   * Neither the name of the organization nor the names of its contributors 
     *     may be used to endorse or promote products derived from this software 
     *     without specific prior written permission. 
     * 
     *   See <http://www.opensource.org/licenses/bsd-license> 
     */  
    #include "precomp.hpp"  
    #include <set>  
      
    namespace cv  
    {  
      
    using std::set;  
      
    // Reads a sequence from a FileNode::SEQ with type _Tp into a result vector.  
    template<typename _Tp>  
    inline void readFileNodeList(const FileNode& fn, vector<_Tp>& result) {  
        if (fn.type() == FileNode::SEQ) {  
            for (FileNodeIterator it = fn.begin(); it != fn.end();) {  
                _Tp item;  
                it >> item;  
                result.push_back(item);  
            }  
        }  
    }  
      
    // Writes the a list of given items to a cv::FileStorage.  
    template<typename _Tp>  
    inline void writeFileNodeList(FileStorage& fs, const string& name,  
                                  const vector<_Tp>& items) {  
        // typedefs  
        typedef typename vector<_Tp>::const_iterator constVecIterator;  
        // write the elements in item to fs  
        fs << name << "[";  
        for (constVecIterator it = items.begin(); it != items.end(); ++it) {  
            fs << *it;  
        }  
        fs << "]";  
    }  
      
    static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) {  
        // make sure the input data is a vector of matrices or vector of vector  
        if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) {  
            string error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >).";  
            CV_Error(CV_StsBadArg, error_message);  
        }  
        // number of samples  
        size_t n = src.total();  
        // return empty matrix if no matrices given  
        if(n == 0)  
            return Mat();  
        // dimensionality of (reshaped) samples  
        size_t d = src.getMat(0).total();  
        // create data matrix  
        Mat data((int)n, (int)d, rtype);  
        // now copy data  
        for(unsigned int i = 0; i < n; i++) {  
            // make sure data can be reshaped, throw exception if not!  
            if(src.getMat(i).total() != d) {  
                string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, d, src.getMat(i).total());  
                CV_Error(CV_StsBadArg, error_message);  
            }  
            // get a hold of the current row  
            Mat xi = data.row(i);  
            // make reshape happy by cloning for non-continuous matrices  
            if(src.getMat(i).isContinuous()) {  
                src.getMat(i).reshape(1, 1).convertTo(xi, rtype, alpha, beta);  
            } else {  
                src.getMat(i).clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta);  
            }  
        }  
        return data;  
    }  
      
      
    // Removes duplicate elements in a given vector.  
    template<typename _Tp>  
    inline vector<_Tp> remove_dups(const vector<_Tp>& src) {  
        typedef typename set<_Tp>::const_iterator constSetIterator;  
        typedef typename vector<_Tp>::const_iterator constVecIterator;  
        set<_Tp> set_elems;  
        for (constVecIterator it = src.begin(); it != src.end(); ++it)  
            set_elems.insert(*it);  
        vector<_Tp> elems;  
        for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it)  
            elems.push_back(*it);  
        return elems;  
    }  
      
      
    // Turk, M., and Pentland, A. "Eigenfaces for recognition.". Journal of  
    // Cognitive Neuroscience 3 (1991), 71–86.  
    //特征脸类  
    class Eigenfaces : public FaceRecognizer  
    {  
    private:  
        int _num_components;//对应“数学上的事”中所提到的q个主成分  
        double _threshold;  
        vector<Mat> _projections;//原始向量投影后的坐标  
        Mat _labels;//每幅图像的标签,用于分类  
        Mat _eigenvectors;//特征向量  
        Mat _eigenvalues;//特征值  
        Mat _mean;//均值  
      
    public:  
        using FaceRecognizer::save;  
        using FaceRecognizer::load;  
      
        // Initializes an empty Eigenfaces model.  
        Eigenfaces(int num_components = 0, double threshold = DBL_MAX) :  
            _num_components(num_components),  
            _threshold(threshold) {}  
      
        // Initializes and computes an Eigenfaces model with images in src and  
        // corresponding labels in labels. num_components will be kept for  
        // classification.  
        Eigenfaces(InputArrayOfArrays src, InputArray labels,  
                int num_components = 0, double threshold = DBL_MAX) :  
            _num_components(num_components),  
            _threshold(threshold) {  
            train(src, labels);  
        }  
      
        // Computes an Eigenfaces model with images in src and corresponding labels  
        // in labels.  
        void train(InputArrayOfArrays src, InputArray labels);  
      
        // Predicts the label of a query image in src.  
        int predict(InputArray src) const;  
      
        // Predicts the label and confidence for a given sample.  
        void predict(InputArray _src, int &label, double &dist) const;  
      
        // See FaceRecognizer::load.  
        void load(const FileStorage& fs);  
      
        // See FaceRecognizer::save.  
        void save(FileStorage& fs) const;  
      
        AlgorithmInfo* info() const;  
    };  
      
    // Belhumeur, P. N., Hespanha, J., and Kriegman, D. "Eigenfaces vs. Fisher-  
    // faces: Recognition using class specific linear projection.". IEEE  
    // Transactions on Pattern Analysis and Machine Intelligence 19, 7 (1997),  
    // 711–720.  
    class Fisherfaces: public FaceRecognizer  
    {  
    private:  
        int _num_components;  
        double _threshold;  
        Mat _eigenvectors;  
        Mat _eigenvalues;  
        Mat _mean;  
        vector<Mat> _projections;  
        Mat _labels;  
      
    public:  
        using FaceRecognizer::save;  
        using FaceRecognizer::load;  
      
        // Initializes an empty Fisherfaces model.  
        Fisherfaces(int num_components = 0, double threshold = DBL_MAX) :  
            _num_components(num_components),  
            _threshold(threshold) {}  
      
        // Initializes and computes a Fisherfaces model with images in src and  
        // corresponding labels in labels. num_components will be kept for  
        // classification.  
        Fisherfaces(InputArrayOfArrays src, InputArray labels,  
                int num_components = 0, double threshold = DBL_MAX) :  
            _num_components(num_components),  
            _threshold(threshold) {  
            train(src, labels);  
        }  
      
        ~Fisherfaces() {}  
      
        // Computes a Fisherfaces model with images in src and corresponding labels  
        // in labels.  
        void train(InputArrayOfArrays src, InputArray labels);  
      
        // Predicts the label of a query image in src.  
        int predict(InputArray src) const;  
      
        // Predicts the label and confidence for a given sample.  
        void predict(InputArray _src, int &label, double &dist) const;  
      
        // See FaceRecognizer::load.  
        void load(const FileStorage& fs);  
      
        // See FaceRecognizer::save.  
        void save(FileStorage& fs) const;  
      
        AlgorithmInfo* info() const;  
    };  
      
    // Face Recognition based on Local Binary Patterns.  
    //  
    //  Ahonen T, Hadid A. and Pietikäinen M. "Face description with local binary  
    //  patterns: Application to face recognition." IEEE Transactions on Pattern  
    //  Analysis and Machine Intelligence, 28(12):2037-2041.  
    //  
    class LBPH : public FaceRecognizer  
    {  
    private:  
        int _grid_x;  
        int _grid_y;  
        int _radius;  
        int _neighbors;  
        double _threshold;  
      
        vector<Mat> _histograms;  
        Mat _labels;  
      
        // Computes a LBPH model with images in src and  
        // corresponding labels in labels, possibly preserving  
        // old model data.  
        void train(InputArrayOfArrays src, InputArray labels, bool preserveData);  
      
      
    public:  
        using FaceRecognizer::save;  
        using FaceRecognizer::load;  
      
        // Initializes this LBPH Model. The current implementation is rather fixed  
        // as it uses the Extended Local Binary Patterns per default.  
        //  
        // radius, neighbors are used in the local binary patterns creation.  
        // grid_x, grid_y control the grid size of the spatial histograms.  
        LBPH(int radius_=1, int neighbors_=8,  
                int gridx=8, int gridy=8,  
                double threshold = DBL_MAX) :  
            _grid_x(gridx),  
            _grid_y(gridy),  
            _radius(radius_),  
            _neighbors(neighbors_),  
            _threshold(threshold) {}  
      
        // Initializes and computes this LBPH Model. The current implementation is  
        // rather fixed as it uses the Extended Local Binary Patterns per default.  
        //  
        // (radius=1), (neighbors=8) are used in the local binary patterns creation.  
        // (grid_x=8), (grid_y=8) controls the grid size of the spatial histograms.  
        LBPH(InputArrayOfArrays src,  
                InputArray labels,  
                int radius_=1, int neighbors_=8,  
                int gridx=8, int gridy=8,  
                double threshold = DBL_MAX) :  
                    _grid_x(gridx),  
                    _grid_y(gridy),  
                    _radius(radius_),  
                    _neighbors(neighbors_),  
                    _threshold(threshold) {  
            train(src, labels);  
        }  
      
        ~LBPH() { }  
      
        // Computes a LBPH model with images in src and  
        // corresponding labels in labels.  
        void train(InputArrayOfArrays src, InputArray labels);  
      
        // Updates this LBPH model with images in src and  
        // corresponding labels in labels.  
        void update(InputArrayOfArrays src, InputArray labels);  
      
        // Predicts the label of a query image in src.  
        int predict(InputArray src) const;  
      
        // Predicts the label and confidence for a given sample.  
        void predict(InputArray _src, int &label, double &dist) const;  
      
        // See FaceRecognizer::load.  
        void load(const FileStorage& fs);  
      
        // See FaceRecognizer::save.  
        void save(FileStorage& fs) const;  
      
        // Getter functions.  
        int neighbors() const { return _neighbors; }  
        int radius() const { return _radius; }  
        int grid_x() const { return _grid_x; }  
        int grid_y() const { return _grid_y; }  
      
        AlgorithmInfo* info() const;  
    };  
      
      
    //------------------------------------------------------------------------------  
    // FaceRecognizer  
    //------------------------------------------------------------------------------  
    void FaceRecognizer::update(InputArrayOfArrays src, InputArray labels ) {  
        if( dynamic_cast<LBPH*>(this) != 0 )  
        {  
            dynamic_cast<LBPH*>(this)->update( src, labels );  
            return;  
        }  
      
        string error_msg = format("This FaceRecognizer (%s) does not support updating, you have to use FaceRecognizer::train to update it.", this->name().c_str());  
        CV_Error(CV_StsNotImplemented, error_msg);  
    }  
      
    void FaceRecognizer::save(const string& filename) const {  
        FileStorage fs(filename, FileStorage::WRITE);  
        if (!fs.isOpened())  
            CV_Error(CV_StsError, "File can't be opened for writing!");  
        this->save(fs);  
        fs.release();  
    }  
      
    void FaceRecognizer::load(const string& filename) {  
        FileStorage fs(filename, FileStorage::READ);  
        if (!fs.isOpened())  
            CV_Error(CV_StsError, "File can't be opened for writing!");  
        this->load(fs);  
        fs.release();  
    }  
      
    //------------------------------------------------------------------------------  
    // Eigenfaces特征脸训练函数  
    //------------------------------------------------------------------------------  
    void Eigenfaces::train(InputArrayOfArrays _src, InputArray _local_labels) {  
        if(_src.total() == 0) {  
            string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");  
            CV_Error(CV_StsBadArg, error_message);  
        } else if(_local_labels.getMat().type() != CV_32SC1) {  
            string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _local_labels.type());  
            CV_Error(CV_StsBadArg, error_message);  
        }  
        // make sure data has correct size确保输入的图像数据尺寸正确(所有尺寸相同)  
        if(_src.total() > 1) {  
            for(int i = 1; i < static_cast<int>(_src.total()); i++) {  
                if(_src.getMat(i-1).total() != _src.getMat(i).total()) {  
                    string error_message = format("In the Eigenfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", _src.getMat(i-1).total(), _src.getMat(i).total());  
                    CV_Error(CV_StsUnsupportedFormat, error_message);  
                }  
            }  
        }  
        // get labels  
        Mat labels = _local_labels.getMat();  
        // observations in row  
        Mat data = asRowMatrix(_src, CV_64FC1);//将_src中存放的图像列表中的每幅图像(reshape成1行)作为data的一行  
      
        // number of samples  
       int n = data.rows;  
        // assert there are as much samples as labels  
        if(static_cast<int>(labels.total()) != n) {  
            string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", n, labels.total());  
            CV_Error(CV_StsBadArg, error_message);  
        }  
        // clear existing model data  
        _labels.release();  
        _projections.clear();  
        // clip number of components to be valid  
        if((_num_components <= 0) || (_num_components > n))  
            _num_components = n;  
      
        // perform the PCA  
        PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, _num_components);  
        // copy the PCA results  
        _mean = pca.mean.reshape(1,1); // store the mean vector获取均值向量  
        _eigenvalues = pca.eigenvalues.clone(); // eigenvalues by row获取特征值  
        transpose(pca.eigenvectors, _eigenvectors); // eigenvectors by column获取特征向量  
        // store labels for prediction  
        _labels = labels.clone();//获取分类标签  
        // save projections  
        for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {  
            Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));  
            _projections.push_back(p);  
        }  
    }  
      
    void Eigenfaces::predict(InputArray _src, int &minClass, double &minDist) const {  
        // get data  
        Mat src = _src.getMat();  
        // make sure the user is passing correct data  
        if(_projections.empty()) {  
            // throw error if no data (or simply return -1?)  
            string error_message = "This Eigenfaces model is not computed yet. Did you call Eigenfaces::train?";  
            CV_Error(CV_StsError, error_message);  
        } else if(_eigenvectors.rows != static_cast<int>(src.total())) {  
            // check data alignment just for clearer exception messages  
            string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());  
            CV_Error(CV_StsBadArg, error_message);  
        }  
        // project into PCA subspace  
        Mat q = subspaceProject(_eigenvectors, _mean, src.reshape(1,1));// 投影到PCA的主成分空间  
        minDist = DBL_MAX;  
        minClass = -1;  
        //求L2范数也就是欧式距离  
        for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {  
            double dist = norm(_projections[sampleIdx], q, NORM_L2);  
            if((dist < minDist) && (dist < _threshold)) {  
                minDist = dist;  
                minClass = _labels.at<int>((int)sampleIdx);  
            }  
        }  
    }  
      
    int Eigenfaces::predict(InputArray _src) const {  
        int label;  
        double dummy;  
        predict(_src, label, dummy);  
        return label;  
    }  
      
    void Eigenfaces::load(const FileStorage& fs) {  
        //read matrices  
        fs["num_components"] >> _num_components;  
        fs["mean"] >> _mean;  
        fs["eigenvalues"] >> _eigenvalues;  
        fs["eigenvectors"] >> _eigenvectors;  
        // read sequences  
        readFileNodeList(fs["projections"], _projections);  
        fs["labels"] >> _labels;  
    }  
      
    void Eigenfaces::save(FileStorage& fs) const {  
        // write matrices  
        fs << "num_components" << _num_components;  
        fs << "mean" << _mean;  
        fs << "eigenvalues" << _eigenvalues;  
        fs << "eigenvectors" << _eigenvectors;  
        // write sequences  
        writeFileNodeList(fs, "projections", _projections);  
        fs << "labels" << _labels;  
    }  
      
    //------------------------------------------------------------------------------  
    // Fisherfaces  
    //------------------------------------------------------------------------------  
    void Fisherfaces::train(InputArrayOfArrays src, InputArray _lbls) {  
        if(src.total() == 0) {  
            string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");  
            CV_Error(CV_StsBadArg, error_message);  
        } else if(_lbls.getMat().type() != CV_32SC1) {  
            string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _lbls.type());  
            CV_Error(CV_StsBadArg, error_message);  
        }  
        // make sure data has correct size  
        if(src.total() > 1) {  
            for(int i = 1; i < static_cast<int>(src.total()); i++) {  
                if(src.getMat(i-1).total() != src.getMat(i).total()) {  
                    string error_message = format("In the Fisherfaces method all input samples (training images) must be of equal size! Expected %d pixels, but was %d pixels.", src.getMat(i-1).total(), src.getMat(i).total());  
                    CV_Error(CV_StsUnsupportedFormat, error_message);  
                }  
            }  
        }  
        // get data  
        Mat labels = _lbls.getMat();  
        Mat data = asRowMatrix(src, CV_64FC1);  
        // number of samples  
        int N = data.rows;  
        // make sure labels are passed in correct shape  
        if(labels.total() != (size_t) N) {  
            string error_message = format("The number of samples (src) must equal the number of labels (labels)! len(src)=%d, len(labels)=%d.", N, labels.total());  
            CV_Error(CV_StsBadArg, error_message);  
        } else if(labels.rows != 1 && labels.cols != 1) {  
            string error_message = format("Expected the labels in a matrix with one row or column! Given dimensions are rows=%s, cols=%d.", labels.rows, labels.cols);  
           CV_Error(CV_StsBadArg, error_message);  
        }  
        // clear existing model data  
        _labels.release();  
        _projections.clear();  
        // safely copy from cv::Mat to std::vector  
        vector<int> ll;  
        for(unsigned int i = 0; i < labels.total(); i++) {  
            ll.push_back(labels.at<int>(i));  
        }  
        // get the number of unique classes  
        int C = (int) remove_dups(ll).size();  
        // clip number of components to be a valid number  
        if((_num_components <= 0) || (_num_components > (C-1)))  
            _num_components = (C-1);  
        // perform a PCA and keep (N-C) components  
        PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, (N-C));  
        // project the data and perform a LDA on it  
        LDA lda(pca.project(data),labels, _num_components);  
        // store the total mean vector  
        _mean = pca.mean.reshape(1,1);  
        // store labels  
        _labels = labels.clone();  
        // store the eigenvalues of the discriminants  
        lda.eigenvalues().convertTo(_eigenvalues, CV_64FC1);  
        // Now calculate the projection matrix as pca.eigenvectors * lda.eigenvectors.  
        // Note: OpenCV stores the eigenvectors by row, so we need to transpose it!  
        gemm(pca.eigenvectors, lda.eigenvectors(), 1.0, Mat(), 0.0, _eigenvectors, GEMM_1_T);  
        // store the projections of the original data  
        for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {  
            Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));  
            _projections.push_back(p);  
        }  
    }  
      
    void Fisherfaces::predict(InputArray _src, int &minClass, double &minDist) const {  
        Mat src = _src.getMat();  
        // check data alignment just for clearer exception messages  
        if(_projections.empty()) {  
            // throw error if no data (or simply return -1?)  
            string error_message = "This Fisherfaces model is not computed yet. Did you call Fisherfaces::train?";  
            CV_Error(CV_StsBadArg, error_message);  
        } else if(src.total() != (size_t) _eigenvectors.rows) {  
            string error_message = format("Wrong input image size. Reason: Training and Test images must be of equal size! Expected an image with %d elements, but got %d.", _eigenvectors.rows, src.total());  
            CV_Error(CV_StsBadArg, error_message);  
        }  
        // project into LDA subspace  
        Mat q = subspaceProject(_eigenvectors, _mean, src.reshape(1,1));  
        // find 1-nearest neighbor  
        minDist = DBL_MAX;  
        minClass = -1;  
        for(size_t sampleIdx = 0; sampleIdx < _projections.size(); sampleIdx++) {  
            double dist = norm(_projections[sampleIdx], q, NORM_L2);  
            if((dist < minDist) && (dist < _threshold)) {  
                minDist = dist;  
                minClass = _labels.at<int>((int)sampleIdx);  
            }  
        }  
    }  
      
    int Fisherfaces::predict(InputArray _src) const {  
        int label;  
        double dummy;  
        predict(_src, label, dummy);  
        return label;  
    }  
      
    // See FaceRecognizer::load.  
    void Fisherfaces::load(const FileStorage& fs) {  
        //read matrices  
        fs["num_components"] >> _num_components;  
        fs["mean"] >> _mean;  
        fs["eigenvalues"] >> _eigenvalues;  
        fs["eigenvectors"] >> _eigenvectors;  
        // read sequences  
        readFileNodeList(fs["projections"], _projections);  
        fs["labels"] >> _labels;  
    }  
      
    // See FaceRecognizer::save.  
    void Fisherfaces::save(FileStorage& fs) const {  
        // write matrices  
        fs << "num_components" << _num_components;  
        fs << "mean" << _mean;  
        fs << "eigenvalues" << _eigenvalues;  
        fs << "eigenvectors" << _eigenvectors;  
        // write sequences  
        writeFileNodeList(fs, "projections", _projections);  
        fs << "labels" << _labels;  
    }  
      
    //------------------------------------------------------------------------------  
    // LBPH  
    //------------------------------------------------------------------------------  
      
    template <typename _Tp> static  
    void olbp_(InputArray _src, OutputArray _dst) {  
        // get matrices  
        Mat src = _src.getMat();  
        // allocate memory for result  
        _dst.create(src.rows-2, src.cols-2, CV_8UC1);  
        Mat dst = _dst.getMat();  
        // zero the result matrix  
        dst.setTo(0);  
        // calculate patterns  
        for(int i=1;i<src.rows-1;i++) {  
            for(int j=1;j<src.cols-1;j++) {  
                _Tp center = src.at<_Tp>(i,j);  
                unsigned char code = 0;  
                code |= (src.at<_Tp>(i-1,j-1) >= center) << 7;  
                code |= (src.at<_Tp>(i-1,j) >= center) << 6;  
                code |= (src.at<_Tp>(i-1,j+1) >= center) << 5;  
                code |= (src.at<_Tp>(i,j+1) >= center) << 4;  
                code |= (src.at<_Tp>(i+1,j+1) >= center) << 3;  
                code |= (src.at<_Tp>(i+1,j) >= center) << 2;  
                code |= (src.at<_Tp>(i+1,j-1) >= center) << 1;  
                code |= (src.at<_Tp>(i,j-1) >= center) << 0;  
                dst.at<unsigned char>(i-1,j-1) = code;  
            }  
        }  
    }  
      
    //------------------------------------------------------------------------------  
    // cv::elbp  
    //------------------------------------------------------------------------------  
    template <typename _Tp> static  
    inline void elbp_(InputArray _src, OutputArray _dst, int radius, int neighbors) {  
        //get matrices  
        Mat src = _src.getMat();  
        // allocate memory for result  
        _dst.create(src.rows-2*radius, src.cols-2*radius, CV_32SC1);  
        Mat dst = _dst.getMat();  
        // zero  
        dst.setTo(0);  
        for(int n=0; n<neighbors; n++) {  
            // sample points  
            float x = static_cast<float>(radius * cos(2.0*CV_PI*n/static_cast<float>(neighbors)));  
            float y = static_cast<float>(-radius * sin(2.0*CV_PI*n/static_cast<float>(neighbors)));  
            // relative indices  
            int fx = static_cast<int>(floor(x));  
            int fy = static_cast<int>(floor(y));  
            int cx = static_cast<int>(ceil(x));  
            int cy = static_cast<int>(ceil(y));  
            // fractional part  
            float ty = y - fy;  
            float tx = x - fx;  
            // set interpolation weights  
            float w1 = (1 - tx) * (1 - ty);  
            float w2 =      tx  * (1 - ty);  
            float w3 = (1 - tx) *      ty;  
            float w4 =      tx  *      ty;  
            // iterate through your data  
            for(int i=radius; i < src.rows-radius;i++) {  
                for(int j=radius;j < src.cols-radius;j++) {  
                    // calculate interpolated value  
                    float t = static_cast<float>(w1*src.at<_Tp>(i+fy,j+fx) + w2*src.at<_Tp>(i+fy,j+cx) + w3*src.at<_Tp>(i+cy,j+fx) + w4*src.at<_Tp>(i+cy,j+cx));  
                    // floating point precision, so check some machine-dependent epsilon  
                    dst.at<int>(i-radius,j-radius) += ((t > src.at<_Tp>(i,j)) || (std::abs(t-src.at<_Tp>(i,j)) < std::numeric_limits<float>::epsilon())) << n;  
                }  
            }  
        }  
    }  
      
    static void elbp(InputArray src, OutputArray dst, int radius, int neighbors)  
    {  
        int type = src.type();  
        switch (type) {  
        case CV_8SC1:   elbp_<char>(src,dst, radius, neighbors); break;  
        case CV_8UC1:   elbp_<unsigned char>(src, dst, radius, neighbors); break;  
        case CV_16SC1:  elbp_<short>(src,dst, radius, neighbors); break;  
        case CV_16UC1:  elbp_<unsigned short>(src,dst, radius, neighbors); break;  
        case CV_32SC1:  elbp_<int>(src,dst, radius, neighbors); break;  
        case CV_32FC1:  elbp_<float>(src,dst, radius, neighbors); break;  
        case CV_64FC1:  elbp_<double>(src,dst, radius, neighbors); break;  
        default:  
            string error_msg = format("Using Original Local Binary Patterns for feature extraction only works on single-channel images (given %d). Please pass the image data as a grayscale image!", type);  
            CV_Error(CV_StsNotImplemented, error_msg);  
            break;  
        }  
    }  
      
    static Mat  
    histc_(const Mat& src, int minVal=0, int maxVal=255, bool normed=false)  
    {  
        Mat result;  
        // Establish the number of bins.  
        int histSize = maxVal-minVal+1;  
        // Set the ranges.  
        float range[] = { static_cast<float>(minVal), static_cast<float>(maxVal+1) };  
        const float* histRange = { range };  
        // calc histogram  
        calcHist(&src, 1, 0, Mat(), result, 1, &histSize, &histRange, true, false);  
        // normalize  
        if(normed) {  
            result /= (int)src.total();  
        }  
        return result.reshape(1,1);  
    }  
      
    static Mat histc(InputArray _src, int minVal, int maxVal, bool normed)  
    {  
        Mat src = _src.getMat();  
        switch (src.type()) {  
            case CV_8SC1:  
                return histc_(Mat_<float>(src), minVal, maxVal, normed);  
                break;  
            case CV_8UC1:  
                return histc_(src, minVal, maxVal, normed);  
                break;  
            case CV_16SC1:  
                return histc_(Mat_<float>(src), minVal, maxVal, normed);  
                break;  
            case CV_16UC1:  
                return histc_(src, minVal, maxVal, normed);  
                break;  
            case CV_32SC1:  
                return histc_(Mat_<float>(src), minVal, maxVal, normed);  
                break;  
            case CV_32FC1:  
                return histc_(src, minVal, maxVal, normed);  
                break;  
            default:  
                CV_Error(CV_StsUnmatchedFormats, "This type is not implemented yet."); break;  
        }  
        return Mat();  
    }  
      
      
    static Mat spatial_histogram(InputArray _src, int numPatterns,  
                                 int grid_x, int grid_y, bool /*normed*/)  
    {  
        Mat src = _src.getMat();  
        // calculate LBP patch size  
        int width = src.cols/grid_x;  
        int height = src.rows/grid_y;  
        // allocate memory for the spatial histogram  
        Mat result = Mat::zeros(grid_x * grid_y, numPatterns, CV_32FC1);  
        // return matrix with zeros if no data was given  
        if(src.empty())  
            return result.reshape(1,1);  
        // initial result_row  
        int resultRowIdx = 0;  
        // iterate through grid  
        for(int i = 0; i < grid_y; i++) {  
            for(int j = 0; j < grid_x; j++) {  
                Mat src_cell = Mat(src, Range(i*height,(i+1)*height), Range(j*width,(j+1)*width));  
                Mat cell_hist = histc(src_cell, 0, (numPatterns-1), true);  
                // copy to the result matrix  
                Mat result_row = result.row(resultRowIdx);  
                cell_hist.reshape(1,1).convertTo(result_row, CV_32FC1);  
                // increase row count in result matrix  
                resultRowIdx++;  
            }  
        }  
        // return result as reshaped feature vector  
        return result.reshape(1,1);  
    }  
      
    //------------------------------------------------------------------------------  
    // wrapper to cv::elbp (extended local binary patterns)  
    //------------------------------------------------------------------------------  
      
    static Mat elbp(InputArray src, int radius, int neighbors) {  
        Mat dst;  
        elbp(src, dst, radius, neighbors);  
        return dst;  
    }  
      
    void LBPH::load(const FileStorage& fs) {  
        fs["radius"] >> _radius;  
        fs["neighbors"] >> _neighbors;  
        fs["grid_x"] >> _grid_x;  
        fs["grid_y"] >> _grid_y;  
        //read matrices  
        readFileNodeList(fs["histograms"], _histograms);  
        fs["labels"] >> _labels;  
    }  
      
    // See FaceRecognizer::save.  
    void LBPH::save(FileStorage& fs) const {  
        fs << "radius" << _radius;  
        fs << "neighbors" << _neighbors;  
        fs << "grid_x" << _grid_x;  
        fs << "grid_y" << _grid_y;  
        // write matrices  
        writeFileNodeList(fs, "histograms", _histograms);  
        fs << "labels" << _labels;  
    }  
      
    void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels) {  
        this->train(_in_src, _in_labels, false);  
    }  
      
    void LBPH::update(InputArrayOfArrays _in_src, InputArray _in_labels) {  
        // got no data, just return  
        if(_in_src.total() == 0)  
            return;  
      
        this->train(_in_src, _in_labels, true);  
    }  
      
    void LBPH::train(InputArrayOfArrays _in_src, InputArray _in_labels, bool preserveData) {  
        if(_in_src.kind() != _InputArray::STD_VECTOR_MAT && _in_src.kind() != _InputArray::STD_VECTOR_VECTOR) {  
            string error_message = "The images are expected as InputArray::STD_VECTOR_MAT (a std::vector<Mat>) or _InputArray::STD_VECTOR_VECTOR (a std::vector< vector<...> >).";  
            CV_Error(CV_StsBadArg, error_message);  
        }  
        if(_in_src.total() == 0) {  
            string error_message = format("Empty training data was given. You'll need more than one sample to learn a model.");  
            CV_Error(CV_StsUnsupportedFormat, error_message);  
        } else if(_in_labels.getMat().type() != CV_32SC1) {  
            string error_message = format("Labels must be given as integer (CV_32SC1). Expected %d, but was %d.", CV_32SC1, _in_labels.type());  
            CV_Error(CV_StsUnsupportedFormat, error_message);  
        }  
        // get the vector of matrices  
        vector<Mat> src;  
        _in_src.getMatVector(src);  
        // get the label matrix  
        Mat labels = _in_labels.getMat();  
        // check if data is well- aligned  
        if(labels.total() != src.size()) {  
            string error_message = format("The number of samples (src) must equal the number of labels (labels). Was len(samples)=%d, len(labels)=%d.", src.size(), _labels.total());  
            CV_Error(CV_StsBadArg, error_message);  
        }  
        // if this model should be trained without preserving old data, delete old model data  
        if(!preserveData) {  
            _labels.release();  
            _histograms.clear();  
        }  
        // append labels to _labels matrix  
        for(size_t labelIdx = 0; labelIdx < labels.total(); labelIdx++) {  
            _labels.push_back(labels.at<int>((int)labelIdx));  
        }  
        // store the spatial histograms of the original data  
        for(size_t sampleIdx = 0; sampleIdx < src.size(); sampleIdx++) {  
            // calculate lbp image  
            Mat lbp_image = elbp(src[sampleIdx], _radius, _neighbors);  
            // get spatial histogram from this lbp image  
            Mat p = spatial_histogram(  
                    lbp_image, /* lbp_image */  
                    static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */  
                    _grid_x, /* grid size x */  
                    _grid_y, /* grid size y */  
                    true);  
            // add to templates  
            _histograms.push_back(p);  
        }  
    }  
      
    void LBPH::predict(InputArray _src, int &minClass, double &minDist) const {  
        if(_histograms.empty()) {  
            // throw error if no data (or simply return -1?)  
            string error_message = "This LBPH model is not computed yet. Did you call the train method?";  
            CV_Error(CV_StsBadArg, error_message);  
        }  
        Mat src = _src.getMat();  
        // get the spatial histogram from input image  
        Mat lbp_image = elbp(src, _radius, _neighbors);  
        Mat query = spatial_histogram(  
                lbp_image, /* lbp_image */  
                static_cast<int>(std::pow(2.0, static_cast<double>(_neighbors))), /* number of possible patterns */  
                _grid_x, /* grid size x */  
                _grid_y, /* grid size y */  
                true /* normed histograms */);  
        // find 1-nearest neighbor  
        minDist = DBL_MAX;  
        minClass = -1;  
        for(size_t sampleIdx = 0; sampleIdx < _histograms.size(); sampleIdx++) {  
            double dist = compareHist(_histograms[sampleIdx], query, CV_COMP_CHISQR);  
            if((dist < minDist) && (dist < _threshold)) {  
                minDist = dist;  
                minClass = _labels.at<int>((int) sampleIdx);  
            }  
        }  
    }  
      
    int LBPH::predict(InputArray _src) const {  
        int label;  
        double dummy;  
        predict(_src, label, dummy);  
        return label;  
    }  
      
      
    Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components, double threshold)  
    {  
        return new Eigenfaces(num_components, threshold);  
    }  
      
    Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components, double threshold)  
    {  
        return new Fisherfaces(num_components, threshold);  
    }  
      
    Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius, int neighbors,  
                                                 int grid_x, int grid_y, double threshold)  
    {  
        return new LBPH(radius, neighbors, grid_x, grid_y, threshold);  
    }  
      
    CV_INIT_ALGORITHM(Eigenfaces, "FaceRecognizer.Eigenfaces",  
                      obj.info()->addParam(obj, "ncomponents", obj._num_components);  
                      obj.info()->addParam(obj, "threshold", obj._threshold);  
                      obj.info()->addParam(obj, "projections", obj._projections, true);  
                      obj.info()->addParam(obj, "labels", obj._labels, true);  
                      obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);  
                      obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);  
                      obj.info()->addParam(obj, "mean", obj._mean, true));  
      
    CV_INIT_ALGORITHM(Fisherfaces, "FaceRecognizer.Fisherfaces",  
                      obj.info()->addParam(obj, "ncomponents", obj._num_components);  
                      obj.info()->addParam(obj, "threshold", obj._threshold);  
                      obj.info()->addParam(obj, "projections", obj._projections, true);  
                      obj.info()->addParam(obj, "labels", obj._labels, true);  
                      obj.info()->addParam(obj, "eigenvectors", obj._eigenvectors, true);  
                      obj.info()->addParam(obj, "eigenvalues", obj._eigenvalues, true);  
                      obj.info()->addParam(obj, "mean", obj._mean, true));  
      
    CV_INIT_ALGORITHM(LBPH, "FaceRecognizer.LBPH",  
                      obj.info()->addParam(obj, "radius", obj._radius);  
                      obj.info()->addParam(obj, "neighbors", obj._neighbors);  
                      obj.info()->addParam(obj, "grid_x", obj._grid_x);  
                      obj.info()->addParam(obj, "grid_y", obj._grid_y);  
                      obj.info()->addParam(obj, "threshold", obj._threshold);  
                      obj.info()->addParam(obj, "histograms", obj._histograms, true);  
                      obj.info()->addParam(obj, "labels", obj._labels, true));  
      
    bool initModule_contrib()  
    {  
        Ptr<Algorithm> efaces = createEigenfaces(), ffaces = createFisherfaces(), lbph = createLBPH();  
        return efaces->info() != 0 && ffaces->info() != 0 && lbph->info() != 0;  
    }  
      
    }  

    http://read.pudn.com/downloads674/sourcecode/graph/opencv/2728222/facerec.cpp__.htm

  • 相关阅读:
    2016年总结,不一样的2016
    appium 遇到的坑
    Python xml 解析百度糯米信息
    Python 3.4 链接mysql5.7 数据库使用方法
    python3.x爬取美团信息
    基于python3的手机号生成脚本
    python3.x 学习心得
    H3C SNMP OID
    jython获取was5.1的jvm监控参数
    使用Jyhon脚本和PMI模块监控WAS性能数据
  • 原文地址:https://www.cnblogs.com/mq0036/p/10337718.html
Copyright © 2011-2022 走看看