zoukankan      html  css  js  c++  java
  • FaceNet pre-trained模型以及FaceNet源码使用方法和讲解

     

    Pre-trained models

    Model name LFW accuracy Training dataset Architecture
    20180408-102900 0.9905 CASIA-WebFace Inception ResNet v1
    20180402-114759 0.9965 VGGFace2 Inception ResNet v1
    Model name LFW accuracy Training dataset Architecture
    20170511-185253 0.987 CASIA-WebFace Inception ResNet v1
    20170512-110547 0.992 MS-Celeb-1M Inception ResNet v1

    模型下载链接:https://pan.baidu.com/s/1aiSq7wGpdHIe6MUKPnXgrA 密码:4dcn

    20170512-110547(MS-Celeb-1M数据集训练的模型文件,微软人脸识别数据库,名人榜选择前100万名人,搜索引擎采集每个名人100张人脸图片。预训练模型准确率0.993+-0.004)

    Ram内存要求

    Neural Network Model Task Ram
    MTCNN Facenet#align() 100MB
    Facenet Facenet#embedding() 2GB

    Inception ResNet v1

    人脸识别数据库

    数据库 描述 用途 获取方法
    CASIA-WebFace 10k+人,约500K张图片 非限制场景 链接
    FaceScrub 530人,约100k张图片 非限制场景 链接
    YouTube Face 1,595个人 3,425段视频 非限制场景、视频 链接
    LFW 5k+人脸,超过10K张图片 标准的人脸识别数据集 链接
    MultiPIE 337个人的不同姿态、表情、光照的人脸图像,共750k+人脸图像 限制场景人脸识别 链接 需购买
    MegaFace 690k不同的人的1000k人脸图像 新的人脸识别评测集合 链接
    IJB-A   人脸识别,人脸检测 链接
    CAS-PEAL 1040个人的30k+张人脸图像,主要包含姿态、表情、光照变化 限制场景下人脸识别 链接
    Pubfig 200个人的58k+人脸图像 非限制场景下的人脸识别

    链接

    VGG2:

    -- Total number of images : 3.31 Million.

    -- Number of identities : 9131 (train: 8631, test: 500)

    -- Number of male identities : 5452

    -- Number of images per identity : 87/362.6/843 (min/avg/max)

    -- Number of pose templates : list of pose template for 368 subjects (2 front templates, 2 three-quarter templates and 2 profile templates, each template containing 5 images)

    -- Number of age templates : list of age template for 100 subjects (2 young templates and 2 mature templates, each template containing 5 images)

    人脸检测

    数据库 描述 用途 获取方法
    FDDB 2845张图片中的5171张脸 标准人脸检测评测集 链接
    IJB-A   人脸识别,人脸检测 链接
    Caltech10k Web Faces 10k+人脸,提供双眼和嘴巴的坐标位置 人脸点检测 链接

    人脸表情

    数据库 描述 用途 获取方法
    CK+ 137个人的不同人脸表情视频帧 正面人脸表情识别 链接

    人脸年龄

    数据库 描述 用途 获取方法
    IMDB-WIKI 包含:IMDb中20k+个名人的460k+张图片 和维基百科62k+张图片, 总共: 523k+张图片 名人年龄、性别 链接
    Adience 包含2k+个人的26k+张人脸图像 人脸性别,人脸年龄段(8组) 链接
    CACD2000 2k名人160k张人脸图片 人脸年龄 链接

    人脸性别

    数据库 描述 用途 获取方法
    IMDB-WIKI 包含:IMDb中20k+个名人的460k+张图片 和维基百科62k+张图片, 总共: 523k+张图片 名人年龄、性别 链接
    Adience 包含2k+个人的26k+张人脸图像 人脸性别,人脸年龄段(8组) 链接

    人脸关键点检测

    数据库 描述 用途 获取方法
    数据库 描述 用途 获取方法

    人脸其它

    数据库 描述 用途 获取方法
    CeleBrayA 200k张人脸图像40多种人脸属性 人脸属性识别 获取方法

    前提条件:已安装并配置好Tensorflow的运行环境。

    第一步:准备facenet程序:

    一、下载FaceNet源码。

    下载地址:facenet源码

    二、精简代码。作者在代码里实现了很多功能,但是对于初学者来说,很多代码是没有必要的,反倒找不到学习这个程序的入口。建议先精简一下代码,便于读懂代码:新建一个文件夹,取名:facenet,把源码中的src文件夹直接拷贝过来。

     

    注:便于大家能够看懂代码,以上两步我已经完成,同时,自己运行程序之后,还对里边的代码做了详细的注释,如果想先了解facenet的源码,强烈建议下载这个,下载地址:facenet精简版

    当然,大家别忘了顺手点个星哦~~~

    第二步:下载预训练模型。

     

    模型下载链接:https://pan.baidu.com/s/1aiSq7wGpdHIe6MUKPnXgrA 密码:4dcn

    下载完成后,把预训练模型的文件夹拷贝在刚才的文件夹里。用pycharm打开这个工程文件如图:

    第三步:运行人脸比对程序(compare.py)。

    facenet可以直接比对两个人脸经过它的网络映射之后的欧氏距离。 

    -1、在compare.py所在目录下放入要比对的文件1.png和2.png。
    -2、运行compare.py文件,但是会报错如下:

    这是因为这个程序需要输入参数,在上方的工具栏里选择Run>EditConfigurations ,在Parameters中配置参数:20170512-110547 1.png 2.png。再次运行程序

     

    可以看到,程序会算出这两个图片的差值矩阵

    第四步:图片预处理——运行人脸对齐程序(alignalign_dataset_mtcnn.py)。

    我们可以下载LFW数据集用来测试这个程序,也为后边的训练函数做好数据准备。

    下载链接:http://vis-www.cs.umass.edu/lfw/。下载后解压在data文件夹中。

    因为程序中神经网络使用的是谷歌的“inception resnet v1”网络模型,这个模型的输入时160*160的图像,而我们下载的LFW数据集是250*250限像素的图像,所以需要进行图片的预处理。

    在运行时需要输入的参数:

    input_dir:输入图像的文件夹(E:facenetdatalfw E:facenetdatalfw)

    output_dir:输出图像的文件夹(E:facenetdatalfw E:facenetdatalfw_160)

    指定裁剪后图片的大小:--image_size 160 --margin 32 --random_order(如果不指定,默认的裁剪结果是182*182像素的)

    比如我的是:E:facenetdatalfw E:facenetdatalfw_160 --image_size 160 --margin 32 --random_order

    如果在pycharm中运行,按照同样的方法配置以上参数如下:

    第五步:运行训练程序:(train_tripletloss.py)。

    前边已经下载并处理好了LFW的数据集,现在,可以进行训练了。

    运行之前,要在train_tripletloss.py中把加载数据的路径改成自己的数据集所在路径,如下图:

    注:train_tripletloss.py和train_softmax.py的区别:这是作者对论文做出的一个延伸,除了使用facenet里提到的train_tripletloss三元组损失函数来训练,还实现了用softmax的训练方法来训练。当然,在样本量很小的情况下,用softmax训练会更容易收敛。但是,当训练集中包含大量的不同个体(超过10万)时,最后一层的softmax输出数量就会变得非常大,但是使用train_tripletloss的训练仍然可以正常工作。

    最后,附上原来的文件中各py文件的作用(持续更新):

    一、主要函数

    align/ :用于人脸检测与人脸对齐的神经网络

    facenet :用于人脸映射的神经网络

    util/plot_learning_curves.m:这是用来在训练softmax模型的时候用matlab显示训练过程的程序

    二、facenet/contributed/相关函数:

    1、基于mtcnn与facenet的人脸聚类

    代码:facenet/contributed/cluster.py(facenet/contributed/clustering.py实现了相似的功能,只是没有mtcnn进行检测这一步)

    主要功能:

    ① 使用mtcnn进行人脸检测并对齐与裁剪

    ② 对裁剪的人脸使用facenet进行embedding

    ③ 对embedding的特征向量使用欧式距离进行聚类

    2、基于mtcnn与facenet的人脸识别(输入单张图片判断这人是谁)

    代码:facenet/contributed/predict.py

    主要功能:

    ① 使用mtcnn进行人脸检测并对齐与裁剪

    ② 对裁剪的人脸使用facenet进行embedding

    ③ 执行predict.py进行人脸识别(需要训练好的svm模型)

    3、以numpy数组的形式输出人脸聚类和图像标签

    代码:facenet/contributed/export_embeddings.py

    主要功能:

    ① 需要对数据进行对齐与裁剪做为输入数据

    ② 输出embeddings.npy;labels.npy;label_strings.npy

  • 相关阅读:
    0621S02E03
    欢迎C#/ASP.NET/MS SQL Server开发Web程序的朋友加入Edrp开发组
    “浪漫满屋”看后感
    欢迎C#/ASP.NET/MS SQL Server开发Web程序的朋友加入Edrp开发组
    “浪漫满屋”看后感
    类型或命名空间名称“UI”在类或命名空间“System.Web”中不存在(是否缺少程序集引用?)的解决方法
    类型或命名空间名称“UI”在类或命名空间“System.Web”中不存在(是否缺少程序集引用?)的解决方法
    伤筋动骨100天吗?
    欢迎Edrp开发组第一个成员Zhuang Liu的加入!
    欢迎Edrp开发组第一个成员Zhuang Liu的加入!
  • 原文地址:https://www.cnblogs.com/mrcharles/p/11879779.html
Copyright © 2011-2022 走看看