zoukankan      html  css  js  c++  java
  • ubuntu安装 tensorflow GPU

    安装支持GPU的tensorflow前提是正确安装好了 CUDA 和 cuDNN。

    CUDA 和 cuDNN的安装见 Nvidia 官网和各种安装教程,应该很容易,重点是要选准了支持自己GPU的 CUDA 版本,再选准支持 该 CUDA 版本的 cuDNN版本。


    关于CUDA:

    tensorflow-gpu 1.5 及以上版本要求 CUDA 版本为9.0;

    如果本机装的 CUDA版本是8,安装了 tensorflow-gpu 1.5及以上版本,会报错:

    ImportError: libcublas.so.9.0: cannot open shared object file: No such file or directory


    查看本机 CUDA 版本方法

    cat /usr/local/cuda/version.txt

    输出:

    CUDA Version 8.0.61


    关于cuDNN:

    tensorflow-gpu 1.3及以上版本要求cudnn版本为V6及以上;

    如果本机装得 cuDNN版本是 V5,安装了 tensorflow-gpu 1.3及以上版本,会报错:

    libcudnn.so.6:cannot open sharedobject file: No such file or directory


    查看本机 cuDNN版本方法

    cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

    输出:

    #define CUDNN_MAJOR      5
    #define CUDNN_MINOR      0
    #define CUDNN_PATCHLEVEL 5
    --
    #define CUDNN_VERSION    (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
    
    #include "driver_types.h"

    本机装了 CUDA 8和 cuDNN V5,对照以上两条,选择安装 tensorflow 1.2版本,安装指令:

    pip install tensorflow-gpu==1.2

    输出贴出来:

    Collecting tensorflow-gpu==1.2
      Downloading tensorflow_gpu-1.2.0-cp27-cp27mu-manylinux1_x86_64.whl (89.2MB)
        100% |████████████████████████████████| 89.2MB 15kB/s 
    Collecting backports.weakref==1.0rc1 (from tensorflow-gpu==1.2)
      Downloading backports.weakref-1.0rc1-py2-none-any.whl
    Requirement already satisfied: wheel in ./anaconda2/lib/python2.7/site-packages (from tensorflow-gpu==1.2)
    Requirement already satisfied: bleach==1.5.0 in ./anaconda2/lib/python2.7/site-packages (from tensorflow-gpu==1.2)
    Requirement already satisfied: numpy>=1.11.0 in ./anaconda2/lib/python2.7/site-packages (from tensorflow-gpu==1.2)
    Collecting markdown==2.2.0 (from tensorflow-gpu==1.2)
      Downloading Markdown-2.2.0.tar.gz (236kB)
        100% |████████████████████████████████| 245kB 42kB/s 
    Requirement already satisfied: mock>=2.0.0 in ./anaconda2/lib/python2.7/site-packages (from tensorflow-gpu==1.2)
    Requirement already satisfied: html5lib==0.9999999 in ./anaconda2/lib/python2.7/site-packages (from tensorflow-gpu==1.2)
    Requirement already satisfied: werkzeug>=0.11.10 in ./anaconda2/lib/python2.7/site-packages (from tensorflow-gpu==1.2)
    Requirement already satisfied: six>=1.10.0 in ./anaconda2/lib/python2.7/site-packages (from tensorflow-gpu==1.2)
    Requirement already satisfied: protobuf>=3.2.0 in ./anaconda2/lib/python2.7/site-packages (from tensorflow-gpu==1.2)
    Requirement already satisfied: funcsigs>=1; python_version < "3.3" in ./anaconda2/lib/python2.7/site-packages (from mock>=2.0.0->tensorflow-gpu==1.2)
    Requirement already satisfied: pbr>=0.11 in ./anaconda2/lib/python2.7/site-packages (from mock>=2.0.0->tensorflow-gpu==1.2)
    Requirement already satisfied: setuptools in ./anaconda2/lib/python2.7/site-packages (from protobuf>=3.2.0->tensorflow-gpu==1.2)
    Building wheels for collected packages: markdown
      Running setup.py bdist_wheel for markdown ... done
      Stored in directory: /home/dcrmg/.cache/pip/wheels/b9/4f/6c/f4c1c5207c1d0eeaaf7005f7f736620c6ded6617c9d9b94096
    Successfully built markdown
    Installing collected packages: backports.weakref, markdown, tensorflow-gpu
      Found existing installation: backports.weakref 1.0.post1
        Uninstalling backports.weakref-1.0.post1:
          Successfully uninstalled backports.weakref-1.0.post1
      Found existing installation: Markdown 2.6.11
        Uninstalling Markdown-2.6.11:
          Successfully uninstalled Markdown-2.6.11
    Successfully installed backports.weakref-1.0rc1 markdown-2.2.0 tensorflow-gpu-1.2.0
    


    要安装哪个版本的tensorflow-gpu,使用 ‘tensorflow-gpu==xx’就行了,安装 1.4版本:

    pip install tensorflow-gpu==1.4

    要卸载也很容易:

    pip uninstall tensorflow-gpu


    测试tensorflow是否可以使用GPU

    import tensorflow as tf
    sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

    输出:

    2018-03-19 07:29:43.114843: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
    2018-03-19 07:29:43.114898: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
    2018-03-19 07:29:43.114917: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
    2018-03-19 07:29:43.114940: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
    2018-03-19 07:29:43.114960: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
    2018-03-19 07:29:43.388602: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
    2018-03-19 07:29:43.389607: I tensorflow/core/common_runtime/gpu/gpu_device.cc:940] Found device 0 with properties: 
    name: GeForce GTX 970
    major: 5 minor: 2 memoryClockRate (GHz) 1.1775
    pciBusID 0000:01:00.0
    Total memory: 3.94GiB
    Free memory: 3.71GiB
    2018-03-19 07:29:43.389661: I tensorflow/core/common_runtime/gpu/gpu_device.cc:961] DMA: 0 
    2018-03-19 07:29:43.389682: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0:   Y 
    2018-03-19 07:29:43.389722: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 970, pci bus id: 0000:01:00.0)
    Device mapping:
    /job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 970, pci bus id: 0000:01:00.0
    2018-03-19 07:29:43.455817: I tensorflow/core/common_runtime/direct_session.cc:265] Device mapping:
    /job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 970, pci bus id: 0000:01:00.0
    

    输出里有 GPU的名称,显存等信息,表示tensorflow可以使用GPU了。

  • 相关阅读:
    EJB>Session Beans
    JSF>标准转换器(Converter)
    EJB>定时服务(Timer Service)
    EJB>实体继承
    EJB>拦截器(Interceptor)
    JSF>输入、输出、命令、选择、表格、其他标签
    JBoss的配置
    JSF>JSF 生命周期
    EJB>改变sessionbean的JNDI名称
    JSF>错误讯息处理
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9411723.html
Copyright © 2011-2022 走看看