Segments
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other)
Total Submission(s) : 11 Accepted Submission(s) : 1
Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.
Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.
For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.
3 2 1.0 2.0 3.0 4.0 4.0 5.0 6.0 7.0 3 0.0 0.0 0.0 1.0 0.0 1.0 0.0 2.0 1.0 1.0 2.0 1.0 3 0.0 0.0 0.0 1.0 0.0 2.0 0.0 3.0 1.0 1.0 2.0 1.0
Yes! Yes! No!
#include"string.h" #include"stdio.h" #include"iostream" #include"algorithm" #include"queue" #include"stack" #define M 5009 #define N 100009 #include"stdlib.h" #include"math.h" #define inf 10000000000000000LL #define INF 0x3f3f3f3f const double PI=acos(-1.0); #define eps 1e-10 using namespace std; struct node { double x,y; node (){} node (double xx,double yy):x(xx),y(yy){} node operator -(node p) { return node (x-p.x,y-p.y); } double operator *(node p) { return x*p.y-y*p.x; } double operator ^(node p) { return x*p.x+y*p.y; } }p[12],q[12]; int cnt; struct line { node s,e; }l[111]; double max(double a,double b) { return a>b?a:b; } double min(double a,double b) { return a<b?a:b; } double cross(node a,node b,node c) { return (b-a)*(c-a); } double dot(node a,node b,node c) { return (b-a)^(c-a); } double len(node a) { return sqrt(a^a); } double dis(node a,node b) { return len(b-a); } int set_line_intersection(line l,line p) { if(dis(l.s,l.e)<eps)//当两个端点构成的直线长度是0的话return 0;因为该直线会与所有线段都有交点 return 0; else if(cross(l.s,l.e,p.s)*cross(l.s,l.e,p.e)<eps) return 1; else return 0; } int slove(int n) { if(n<=2) return 1; int i,j,k,flag; for(i=1;i<=n;i++) { flag=1; for(k=1;k<=n;k++) { if(!set_line_intersection(l[i],l[k])) { flag=0; break; } } if(flag) return 1; } for(i=1;i<=n;i++) { for(j=i+1;j<=n;j++) { line l1; l1.s=l[i].s; l1.e=l[j].s; flag=1; for(k=1;k<=n;k++) { if(!set_line_intersection(l1,l[k])) { flag=0; break; } } if(flag) return 1; flag=1; l1.s=l[i].s; l1.e=l[j].e; for(k=1;k<=n;k++) { if(!set_line_intersection(l1,l[k])) { flag=0; break; } } if(flag) return 1; flag=1; l1.s=l[i].e; l1.e=l[j].s; for(k=1;k<=n;k++) { if(!set_line_intersection(l1,l[k])) { flag=0; break; } } if(flag) return 1; flag=1; l1.s=l[i].e; l1.e=l[j].e; for(k=1;k<=n;k++) { if(!set_line_intersection(l1,l[k])) { flag=0; break; } } if(flag) return 1; } } return 0; } int main() { int T,n,i; cin>>T; while(T--) { scanf("%d",&n); for(i=1;i<=n;i++) scanf("%lf%lf%lf%lf",&l[i].s.x,&l[i].s.y,&l[i].e.x,&l[i].e.y); if(slove(n)) printf("Yes! "); else printf("No! "); } return 0; }