zoukankan      html  css  js  c++  java
  • NumPy基础:多维数组对象

    • 创建ndarray
      • array:将输入数据转换为ndarry
      • arange:类似于range,返回一个ndarray
      • ones、ones_like:根据指定形状和dtype创建一个全1数组。ones_like以另一个数组为参照,根据其形状和dtype创建一个全1数组
      • zeros、zeros_like:根据指定形状和dtype创建一个全0数组。zeros_like以另一个数组为参照,根据其形状和dtype创建一个全0数组
      • empty、empty_like:创建新数组,只分配内存空间但不填充任何值
      • eye、identity:创建一个正方的N*N单位矩阵(对角线为1,其余为0)
    import numpy as np
    data1 = np.array([1,9,8,8,0,4,1,6])
    print(data1)
    '''
    [1 9 8 8 0 4 1 6]
    '''
    
    data2 = np.array([[1,2,3],[4,5,6]])
    print(data2)
    '''
    [[1 2 3]
     [4 5 6]]
     '''
    data3 = np.arange(10)
    print(data3)
    '''
    [0 1 2 3 4 5 6 7 8 9]
    '''
    data4 = np.ones(3)
    print(data4)
    '''
    [1. 1. 1.]
    '''
    data_like = [[1,2,3],[4,5,6]]
    data5 = np.ones_like(data_like)
    print(data5)
    '''
    [[1 1 1]
     [1 1 1]]
    '''
    data4 = np.ones(3)
    print(data4)
    '''
    [1. 1. 1.]
    '''
    data6 = np.zeros(3)
    print(data6)
    '''
    [0. 0. 0.]
    '''
    data_like = [[1,2,3],[4,5,6]]
    data7 = np.zeros_like(data_like)
    print(data7)
    '''
    [[0 0 0]
     [0 0 0]]
    '''
    data8 = np.empty(3)
    print(data8)
    '''
    [4.24399158e-314 8.48798317e-314 1.27319747e-313]
    '''
    data9 = np.eye(3)
    print(data9)
    '''
    [[1. 0. 0.]
     [0. 1. 0.]
     [0. 0. 1.]]
    '''
    • ndarray的数据类型
    import numpy as np
    
    # np.array 会尝试为新建的数组推断一个较为合适的数据类型
    arr1 = np.array([1,2,3])
    print(arr1.dtype)
    '''
    int32
    '''
    
    # 可使用dtype数据类型
    arr2 = np.array([1,2,3],dtype=np.float)
    print(arr2.dtype)
    '''
    float64
    '''
    
    arr3 = np.array([1.1,2,3])
    print(arr3.dtype)
    '''
    float64
    '''
    
    arr4 = np.array([1.1,2,3],dtype=np.int32)
    print(arr4.dtype)
    '''
    int32
    '''
    
    # 通过astype方法可转换dtype
    # 调用astype会创建出一个新数组(原始数据的一份拷贝)
    arr5 = np.array([1,2,3])
    float_arr = arr5.astype(np.float64)
    print(float_arr.dtype)
    '''
    float64
    '''
    
    # 注意:如果浮点数转换为整数,则小数部分将会被截断
    arr6 = np.array([1.2,2,3])
    int_arr = arr6.astype(np.int32)
    print(int_arr.dtype)
    '''
    int32
    '''
    print(int_arr)
    '''
    [1 2 3]
    '''
    • 数组和标量之间的运算
    import numpy as np
    
    arr = np.array([[1,2,3],[4,5,6]])
    
    print(arr+arr)
    '''
    [[ 2  4  6]
     [ 8 10 12]]
    '''
    print(arr-arr)
    '''
    [[0 0 0]
     [0 0 0]]
    '''
    print(arr*arr)
    '''
    [[ 1  4  9]
     [16 25 36]]
    '''
    print(arr/arr)
    '''
    [[1. 1. 1.]
     [1. 1. 1.]]
    '''
    print(arr**arr)
    '''
    [[    1     4    27]
     [  256  3125 46656]]
    '''
    print(arr+1)
    '''
    [[2 3 4]
     [5 6 7]]
    '''
    • 基本的索引和切片
    import numpy as np
    
    # 一维数组
    arr = np.arange(10)
    print(arr)
    '''
    [0 1 2 3 4 5 6 7 8 9]
    '''
    print(arr[5])
    '''
    5
    '''
    print(arr[5:8])
    '''
    [5 6 7]
    '''
    # 当你将一个标量赋值给一个切片时,该值会自动传播到整个选区
    arr[5:8] = 12
    print(arr)
    '''
    [ 0  1  2  3  4 12 12 12  8  9]
    '''
    # 数组切片是原始数据视图。这意味着数据不会被复制,任何修改直接反应到源数组上
    arr_slice = arr[5:8]
    arr_slice[1] = 12345
    print(arr)
    '''
    [    0     1     2     3     4    12 12345    12     8     9]
    '''
    arr_slice[:] = 64
    print(arr)
    '''
    [ 0  1  2  3  4 64 64 64  8  9]
    '''
    
    # 二维数组
    arr2d = np.array([[1,2,3],[4,5,6],[7,8,9]])
    print(arr2d)
    '''
    [[1 2 3]
     [4 5 6]
     [7 8 9]]
    '''
    print(arr2d[2])
    '''
    [7 8 9]
    '''
    print(arr2d[0][2])
    '''
    3
    '''
    print(arr2d[0,2])
    '''
    3
    '''
    # 多维数组
    arr3d = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
    print(arr3d)
    '''
    [[[ 1  2  3]
      [ 4  5  6]]
    
     [[ 7  8  9]
      [10 11 12]]]
    '''
    print(arr3d[0])
    '''
    [[1 2 3]
     [4 5 6]]
    '''
    old_values = arr3d[0].copy()
    arr3d[0] = 42
    print(arr3d)
    '''
    [[[42 42 42]
      [42 42 42]]
    
     [[ 7  8  9]
      [10 11 12]]]
    '''
    arr3d[0] = old_values
    print(arr3d)
    '''
    [[[ 1  2  3]
      [ 4  5  6]]
    
     [[ 7  8  9]
      [10 11 12]]]
    
    '''
    print(arr3d[1,0])
    '''
    [7 8 9]
    '''
    • 切片索引
    import numpy as np
    
    # 一维数组
    arr = np.arange(10)
    print(arr[1:6])
    '''
    [1 2 3 4 5]
    '''
    
    # 二维数组
    arr2d = np.array([[1,2,3],[4,5,6],[7,8,9]])
    print(arr2d[:2])
    '''
    [[1 2 3]
     [4 5 6]]
    '''
    print(arr2d[:2,1:])
    '''
    [[2 3]
     [5 6]]
    '''
    # 索引与切片混合
    print(arr2d[1,:2])
    '''
    [4 5]
    '''
    # 只有冒号表示选区整个轴
    print(arr2d[:,:2])
    '''
    [[1 2]
     [4 5]
     [7 8]]
    '''
    # 对切片赋值也会扩散到整个选区
    arr2d[:,:2]=0
    print(arr2d)
    '''
    [[0 0 3]
     [0 0 6]
     [0 0 9]]
    '''
    • 布尔型索引
    import numpy as np
    from numpy.matlib import randn
    
    names = np.array(['Bob','Joe','Will','Bob','Will','Joe','Joe'])
    
    # 等于
    print(names=="Bob")
    '''
    [ True False False  True False False False]
    '''
    # 不等于
    print(names!="Bob")
    '''
    [False  True  True False  True  True  True]
    '''
    # 组合多个条件使用&、|
    print((names=="Bob")|(names=="Will"))
    '''
    [ True False  True  True  True False False]
    '''
    data = randn(7,3)
    print(data)
    '''
    [[ 0.35234481  0.68539956  0.2206396 ]
     [-1.3719165  -0.42694698  1.28509104]
     [-0.95479498 -0.65378008 -0.1673056 ]
     [-1.79677508  0.18923784  1.67064335]
     [-1.24383276 -0.50056086 -0.7917794 ]
     [-0.92646918  0.47489349 -0.62463223]
     [ 0.0995606  -1.20420049 -1.55692415]]
    '''
    mask =(names=="Bob")  # 0和3为Ture,取0和3行
    print(data[mask])
    '''
    [[ 0.35234481  0.68539956  0.2206396 ]
     [-1.79677508  0.18923784  1.67064335]]
    '''
    #
    mask =(names=="Bob")|(names=="Will") # 0、2、3、4为Ture,取这4行
    print(data[mask])
    '''
    [[ 0.35234481  0.68539956  0.2206396 ]
     [-0.95479498 -0.65378008 -0.1673056 ]
     [-1.79677508  0.18923784  1.67064335]
     [-1.24383276 -0.50056086 -0.7917794 ]]
    '''
    # 将data中负值置为0
    data[data<0] = 0
    print(data)
    '''
    [[0.35234481 0.68539956 0.2206396 ]
     [0.         0.         1.28509104]
     [0.         0.         0.        ]
     [0.         0.18923784 1.67064335]
     [0.         0.         0.        ]
     [0.         0.47489349 0.        ]
     [0.0995606  0.         0.        ]]
    '''
    # 通过布尔数组设置整条或整列的值
    data[names=="Bob"] = 7
    print(data)
    '''
    [[7.         7.         7.        ]
     [0.         0.5615304  0.        ]
     [0.         1.05144009 0.04887547]
     [7.         7.         7.        ]
     [0.5067665  0.         0.        ]
     [2.0465758  0.78871507 0.68937188]
     [1.58986486 0.86841601 1.46533603]]
    '''
    • 花式索引
    import numpy as np
    
    # 花式索引:利用整数数组进行索引
    '''
    arr = np.empty((8,4))
    for i in range(8):
        arr[i] = i
    '''
    arr = np.arange(16).reshape((4,4))
    print(arr)
    '''
    [[ 0  1  2  3]
     [ 4  5  6  7]
     [ 8  9 10 11]
     [12 13 14 15]]
    '''
    # 为了特定顺序选取行子集,需传入一个用于指定顺序的整数列
    print(arr[[1,0,2]])
    '''
    [[ 4  5  6  7]
     [ 0  1  2  3]
     [ 8  9 10 11]]
    '''
    # 传入多个索引
    print(arr[[1,0,2],[0,1,2]]) 
    '''
    [ 4  1 10]
    '''
    # 使用负数索引将会从末尾开始选行
    print(arr[[-3,-2,-1]])
    '''
    [[ 4  5  6  7]
     [ 8  9 10 11]
     [12 13 14 15]]
    '''
    • 数组的转置与轴对换
    import numpy as np
    
    arr = np.arange(15).reshape((3,5))
    print(arr)
    '''
    [[ 0  1  2  3  4]
     [ 5  6  7  8  9]
     [10 11 12 13 14]]
    '''
    print(arr.T)
    '''
    [[ 0  5 10]
     [ 1  6 11]
     [ 2  7 12]
     [ 3  8 13]
     [ 4  9 14]]
    '''
    # 矩阵内积
    print(np.dot(arr.T,arr))
    '''
    [[125 140 155 170 185]
     [140 158 176 194 212]
     [155 176 197 218 239]
     [170 194 218 242 266]
     [185 212 239 266 293]]
    '''
    
    arr2 = np.arange(16).reshape((2,2,4))
    print(arr2)
    '''
    [[[ 0  1  2  3]
      [ 4  5  6  7]]
    
     [[ 8  9 10 11]
      [12 13 14 15]]]
    '''
    print(arr2.transpose((1,0,2))) #行列索引值对换
    '''
    [[[ 0  1  2  3]
      [ 8  9 10 11]]
    
     [[ 4  5  6  7]
      [12 13 14 15]]]
    '''
    
    arr3 = np.arange(16).reshape((2,2,4))
    print(arr3)
    '''
    [[[ 0  1  2  3]
      [ 4  5  6  7]]
    
     [[ 8  9 10 11]
      [12 13 14 15]]]
    '''
    print(arr3.swapaxes(1,2))
    '''
    [[[ 0  4]
      [ 1  5]
      [ 2  6]
      [ 3  7]]
    
     [[ 8 12]
      [ 9 13]
      [10 14]
      [11 15]]]
    '''
  • 相关阅读:
    css 图片的无缝滚动
    有时间研究下这个
    js的类数组对象
    js的this什么时候会出现报错
    js前端分页
    js队列
    js前端处理url中的参数为对象
    随机看的一点代码
    js的callee和caller方法
    js的Object和Function
  • 原文地址:https://www.cnblogs.com/nicole-zhang/p/12931168.html
Copyright © 2011-2022 走看看