zoukankan      html  css  js  c++  java
  • P5856「SWTR-03」Game

    题意

    我自闭了,连蓝题都不会了,还得看题解。

    以下是我理解的官方做法,献给给广大没看懂官方题解的神仙们。作者蒟蒻,如果有什么不对的地方请指出。

    观察题目的限制,发现(q)是一个(p^z)的形式,因此我们可以考虑每个质数(p)

    对于每个质数(p),我们求出一个(0-1)(state_i),其中第(i)位为(1)则表示存在一个数,它分解后(p)这个质因子的次幂为(i)。特殊地,如果一个数不含(p)这个质因子,那么第(0)位为(1)(p)的次幂的上界很小,(p=2)时最大,才(log_2)级别,因此是开得下的。

    现在我们考虑通过题中的操作使得(a_{1...n})相同的过程:
    对于每个质数(p),显然只有所有(a_i)分解后的(p)的次幂相同才会满足条件。

    先假设我们要将所有的(a_i)(p)的次幂都消成(0)

    此时,我们要对(p)的状态求出一个最小的集合,满足将这个集合内的数任意相加可以拼出(p)的状态中所有的位置。

    就拿官方题解里的例子吧:
    对于(1000111010),在(1,3,4,5,9)位上是(1)(注意我们是从右向左从零开始数的),于是(f_{(1000111010)_2}=3),因为我们可以通过({1,3,5})拼出所有的数。((1=1)(3=3)(4=1+3)(5=5)(9=1+3+5)

    此时我们在(q=p^1)时操作分解后(p)的次幂为(1,4,9)的位置,在(q=p^3)时操作分解后(p)的次幂为(3,4,9)的位置,在(q=p^5)时操作分解后(p)的次幂为(5,9)的位置,那么所有的数中(p)的次幂都为(0)

    那么我们就设(f_s)表示状态(s)的答案,我们可以(dfs)求出。

    但是包含(s)的状态(t)(即(s)(t)的子集)的答案(f_t)也可以更新(f_s)(能拼出(t)就能拼出(s)),我们再枚举每个状态,更新它的子集即可。

    现在考虑我们不把所有的(a_i)中的(p)的次幂消成(0)的情况。

    这时候需要满足该状态最低位(即第(0)位)不为(0),因为为(0)的话就说明有一个数根本就没有(p)这个质因子,那肯定要全消完。

    那么我们保留(p^k)就相当于(s_p>>k)这个状态的答案,还是拿之前的那个举例:
    (1000111010),在(1,3,4,5,9)位上是(1)
    我们现在保留(p^1),也就是我们要找最小的集合,使其能拼成(0,2,3,4,8),那么对应的状态就是(s_p>>1)

    由衷地感叹:这题的确是道思维好题。

    code(真·抄的官方题解):

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=1e6+10;
    const int maxm=20;
    int n,ans;
    int a[maxn],f[1<<maxm],state[1<<maxm],cnt[1<<maxm];
    bool vis[maxn];
    vector<int>prime;
    inline void pre_work()
    {
    	vis[1]=1;
    	for(int i=2;i<=1000000;i++)
    	{
    		if(!vis[i])prime.push_back(i);
    		for(unsigned int j=0;j<prime.size()&&i*prime[j]<=1000000;j++)
    		{
    			vis[i*prime[j]]=1;
    			if(i%prime[j]==0)break;
    		}
    	}
    }
    void dfs(int dep,int now,int s)
    {
    	f[s]=min(f[s],dep-1);
    	if(dep>5)return;
    	for(int i=now;i<=20;i++)dfs(dep+1,i,(s|(s<<i))&((1<<20)-1));
    }
    int main()
    {
    	pre_work();
    	scanf("%d",&n);
    	for(int i=1;i<=n;i++)scanf("%d",&a[i]);
    	memset(f,0x3f,sizeof(f));
    	dfs(1,1,1);
    	for(int s=(1<<20)-1;s;s--)
    		for(int j=1;j<=20;j++)
    			if(!((s>>(j-1))&1))f[s]=min(f[s],f[s|(1<<(j-1))]);
    	for(int s=1;s<(1<<20);s++)if(!(s&1))f[s]=min(f[s],f[s>>1]);
    	for(int i=1;i<=n;i++)
    	{
    		int tmp=a[i];
    		for(unsigned int j=0;j<prime.size()&&prime[j]*prime[j]<=tmp;j++)
    		{
    			if(tmp%prime[j])continue;
    			int k=0;
    			while(tmp%prime[j]==0)k++,tmp/=prime[j];
    			state[prime[j]]|=1<<k;cnt[prime[j]]++;
    		}
    		if(tmp>1)cnt[tmp]++,state[tmp]|=2;
    	}
    	for(int i=2;i<=1000000;i++)
    	{
    		if(cnt[i]!=n)state[i]|=1;
    		ans+=f[state[i]];
    	}
    	printf("%d",ans);
    	return 0;
    }
    
  • 相关阅读:
    设置IIS允许下载.config文件
    SQL Server 触发器
    MVC参数自动装配
    sql之left join、right join、inner join的区别
    C# 之泛型详解
    Frameset使用教程
    网页引用Font Awesome图标
    ubuntu下apache2 安装 配置 卸载 CGI设置 SSL设置
    深入理解JAVA I/O系列二:字节流详解
    深入理解JAVA I/O系列三:字符流详解
  • 原文地址:https://www.cnblogs.com/nofind/p/12130830.html
Copyright © 2011-2022 走看看