zoukankan      html  css  js  c++  java
  • 二十五、scrapy中的去重规则及自定义

    settings.py中,虽然没有明确写出来去重方式,但是默认为以下内容

    DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter'
    DUPEFILTER_CLASS = False    
    JOBDIR = "保存范文记录的日志路径,如:/root/"     # 最终路径为 /root/requests.seen

    通过改写以下代码, 并在settings.py中重新写入,以达到替换的目的

    DUPEFILTER_CLASS = '替换为自己的去重类规则'
    import os
    import logging
    
    from scrapy.utils.job import job_dir
    from scrapy.utils.request import referer_str, request_fingerprint
    
    
    class RFPDupeFilter(BaseDupeFilter):
        """Request Fingerprint duplicates filter"""
    
        def __init__(self, path=None, debug=False):
            self.file = None
            self.fingerprints = set()    # 默认指纹为set类型,可改写
            self.logdupes = True
            self.debug = debug
            self.logger = logging.getLogger(__name__)
            if path:
                self.file = open(os.path.join(path, 'requests.seen'), 'a+')
                self.file.seek(0)
                self.fingerprints.update(x.rstrip() for x in self.file)
    
        @classmethod
        def from_settings(cls, settings):
            # 不同于from_crawler中的crawler,这里直接是settings
            debug = settings.getbool('DUPEFILTER_DEBUG')
            return cls(job_dir(settings), debug)
    
        def request_seen(self, request):
            # 判断进入scheduler中的Request,是否已经出现,出现返回True,未出现就将其添加并返回False
            fp = self.request_fingerprint(request)
            if fp in self.fingerprints:
                return True
            self.fingerprints.add(fp)
            if self.file:
                self.file.write(fp + '
    ')
    
        def request_fingerprint(self, request):
            # 该request_fingerprint为定义指纹特征
            # 来自:scrapy.utils.request.request_fingerprint
            """
            def request_fingerprint(request, include_headers=None, keep_fragments=False):
                if include_headers:    # 取请求头
                    include_headers = tuple(to_bytes(h.lower()) for h in sorted(include_headers))
                cache = _fingerprint_cache.setdefault(request, {})
                cache_key = (include_headers, keep_fragments)
                if cache_key not in cache:
                    fp = hashlib.sha1()    # sha1加密
                    fp.update(to_bytes(request.method))
                    fp.update(to_bytes(canonicalize_url(request.url, keep_fragments=keep_fragments)))
                    fp.update(request.body or b'')
                    if include_headers:
                        for hdr in include_headers:
                            if hdr in request.headers:
                                fp.update(hdr)
                                for v in request.headers.getlist(hdr):
                                    fp.update(v)
                    cache[cache_key] = fp.hexdigest()
                return cache[cache_key]
            """
            return request_fingerprint(request)
    
        def close(self, reason):
            if self.file:
                self.file.close()
    
        def log(self, request, spider):
            if self.debug:
                msg = "Filtered duplicate request: %(request)s (referer: %(referer)s)"
                args = {'request': request, 'referer': referer_str(request)}
                self.logger.debug(msg, args, extra={'spider': spider})
            elif self.logdupes:
                msg = ("Filtered duplicate request: %(request)s"
                       " - no more duplicates will be shown"
                       " (see DUPEFILTER_DEBUG to show all duplicates)")
                self.logger.debug(msg, {'request': request}, extra={'spider': spider})
                self.logdupes = False
    
            spider.crawler.stats.inc_value('dupefilter/filtered', spider=spider)
    View Code
  • 相关阅读:
    【平衡规划】JZOJ4616. 【NOI2016模拟7.12】二进制的世界
    函数中,如何修改形参的默认值
    默认形参在函数定义阶段就已经被赋值,在调用时就可以不用再次赋值了。
    在函数调用时:位置形参、位置实参、关键字实参的特点
    return之为什么能够终止函数,代码演练
    深度理解return具体用法
    函数基础重点掌握内容:创建函数、return返回单个值、return返回多个值、函数名加括号与不加括号的区别
    python之encode和decode编码
    python利用setsockopt获得端口重用
    python并发之多进程
  • 原文地址:https://www.cnblogs.com/nuochengze/p/13377112.html
Copyright © 2011-2022 走看看