(color{#0066ff}{ 题目描述 })
给出一个序列({a_i}),试将其划分为尽可能多的非空子段,满足每一个元素出现且仅出现在其中一个子段中,且在这些子段中任取若干子段,它们包含的所有数的异或和不能为(0).
(color{#0066ff}{输入格式})
第一行一个整数(n(1 leq n leq 10^5))表示序列长度
接下来一行(n)个整数(a_i(0 leq a_i leq 10^9))描述这个序列
(color{#0066ff}{输出格式})
一行,如果不存在方案输出-1
,否则输出所有合法的划分方案中最大的划分数
(color{#0066ff}{输入样例})
4
5 5 7 2
3
1 2 3
3
3 1 10
(color{#0066ff}{输出样例})
2
-1
3
(color{#0066ff}{数据范围与提示})
none
(color{#0066ff}{ 题解 })
求一下前缀异或和
把所有前缀插入线性基
答案就是线性基张成空间大小
#include<bits/stdc++.h>
#define LL long long
#define ing long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 4e5 + 10;
int b[255], a[maxn];
void ins(int x) {
for(int i = 40; i >= 0; i--) {
if(x & (1LL << i)) {
if(!b[i]) {
b[i] = x;
break;
}
x ^= b[i];
}
}
}
signed main() {
int n = in();
for(int i = 1; i <= n; i++) a[i] = a[i - 1] ^ in();
if(a[n] == 0) printf("-1");
else {
for(int i = 1; i <= n; i++) ins(a[i]);
int ans = 0;
for(int i = 0; i <= 40; i++) if(b[i]) ans++;
printf("%d
", ans);
}
return 0;
}