题目
给出一棵(n)个点的树,从1到(n)编号,(m)次询问({LCA} _{vin[L,R]})。
(n,mle 3 imes 10^5)
分析
我的做法是直接对LCA进行倍增,即(f[i][j])表示从(i)号点开始的(2^j)个点的LCA,(O(nlog ^2 n))预处理(O(log n))查询(分成前后两段,类似RMQ问题中ST表的做法)。
实际上还有复杂度更低的方法。
求一大堆点的共同LCA其实就是求其中dfn序最小和最大的点的LCA。直观的证明如下。取得询问点的中dfn序最小的那个,设为(x),另一个点(v)点的位置有两种情况:
- (v)在(x)的子树内(能满足(dfn_v>dfn_x)),那么他们的LCA就是(x)
- (v)在(x)的子树外,那么它必定在(x)的某一个祖先的子树内。这个祖先越往上,(dfn_v)就越大。
综上,一堆点的LCA为其中dfn序最小和最大的两点的LCA。
于是这个问题就变成了一个每次得到dfn序的极值点,求一次LCA的了。可以用线段树方便地实现。复杂度为(O((n+m)log n))。
代码
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
#include<algorithm>
#define M(x) memset(x,0,sizeof x)
using namespace std;
int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=3e5+1;
const int maxj=19;
int n,st[maxn][maxj],bin[maxn];
namespace tree {
vector<int> g[maxn];
int top[maxn],size[maxn],son[maxn],dep[maxn],fat[maxn];
void clear(int n) {
for (int i=1;i<=n;++i) g[i].clear();
M(top),M(size),M(son),M(dep);
}
void add(int x,int y) {g[x].push_back(y);}
int dfs(int x,int fa) {
int &sz=size[x]=1,&sn=son[x]=0;
dep[x]=dep[fat[x]=fa]+1;
for (int v:g[x]) if (v!=fa) {
sz+=dfs(v,x);
if (size[v]>size[sn]) sn=v;
}
return sz;
}
void Top(int x,int fa,int tp) {
top[x]=tp;
if (son[x]) Top(son[x],x,tp);
for (int v:g[x]) if (v!=fa && v!=son[x]) Top(v,x,v);
}
int lca(int x,int y) {
for (;top[x]!=top[y];dep[top[x]]>dep[top[y]]?x=fat[top[x]]:y=fat[top[y]]);
return dep[x]<dep[y]?x:y;
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
while (~scanf("%d",&n)) {
tree::clear(n);
for (int i=2;i<=n;++i) bin[i]=bin[i>>1]+1;
M(st);
for (int i=1;i<n;++i) {
int x=read(),y=read();
tree::add(x,y),tree::add(y,x);
}
tree::dfs(1,1);
tree::Top(1,1,1);
for (int i=1;i<=n;++i) st[i][0]=i;
for (int j=1;j<maxj;++j) for (int i=1;i<=n;++i) {
st[i][j]=st[i][j-1];
if ((i+(1<<(j-1)))<=n) st[i][j]=tree::lca(st[i][j],st[i+(1<<(j-1))][j-1]);
}
int m=read();
while (m--) {
int l=read(),r=read();
int len=r-l+1,d=bin[len];
int ans=tree::lca(st[l][d],st[r-(1<<d)+1][d]);
printf("%d
",ans);
}
}
return 0;
}