zoukankan      html  css  js  c++  java
  • HDU2841(容斥原理)

    Visible Trees

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2737    Accepted Submission(s): 1196


    Problem Description
    There are many trees forming a m * n grid, the grid starts from (1,1). Farmer Sherlock is standing at (0,0) point. He wonders how many trees he can see.

    If two trees and Sherlock are in one line, Farmer Sherlock can only see the tree nearest to him.
     
    Input
    The first line contains one integer t, represents the number of test cases. Then there are multiple test cases. For each test case there is one line containing two integers m and n(1 ≤ m, n ≤ 100000)
     
    Output
    For each test case output one line represents the number of trees Farmer Sherlock can see.
     
    Sample Input
    2
    1 1
    2 3
     
    Sample Output
    1
    5
    思路:若点(x,y)中x与y互质则点(x,y)可以看见,否则被挡住。那么题意就转化为1~m与i互质的点的个数之和,其中(1<=i<=n)。
    #include <cstdio>
    #include <vector>
    using namespace std;
    typedef long long LL;
    const int MAXN=100001;
    vector<int> divisor[MAXN];
    void prep()
    {
        for(int e=1;e<MAXN;e++)
        {
            int x=e;
            for(int i=2;i*i<=x;i++)
            {
                if(x%i==0)
                {
                    divisor[e].push_back(i);
                    while(x%i==0)    x/=i;
                }
            }
            if(x>1)    divisor[e].push_back(x);
        }
    }
    LL sieve(LL m,LL n)
    {
        LL ans=0;
        for(LL mark=1;mark<(1<<divisor[n].size());mark++)
        {
            LL mul=1;
            LL odd=0;
            for(LL i=0;i<divisor[n].size();i++)
            {
                if(mark&(1<<i))
                {
                    mul*=divisor[n][i];
                    odd++;
                }
            }
            LL cnt=m/mul;
            if(odd&1)    ans+=cnt;
            else ans-=cnt;
        }
        return m-ans;
    }
    int n,m;
    int main()
    {
        int T;
        prep();
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&m,&n);
            LL res=0;
            for(int i=1;i<=n;i++)
            {
                res+=sieve(m,i);
            }
            printf("%lld
    ",res);
        }
        return 0;
    }
     
  • 相关阅读:
    python3 进程_multiprocessing模块
    python3 线程_threading模块
    python3 异常处理
    python3 面向对象补充
    python3 多态,绑定方法与非绑定方法
    python3 uper(),继承实现原理,封装
    python3 面向对象、类、继承、组合、派生、接口、子类重用父类方法
    python3 正则表达式re模块
    python3 json、logging、sys模块
    mysql查询练习
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5813158.html
Copyright © 2011-2022 走看看