背景:(测试环境)只有两台机器一台namenode一台namenode,但集群只有一个结点感觉不出来效果,在namenode上挂一个datanode就有两个节点,弊端见最后
操作非常简单(添加独立节点参照:http://www.cnblogs.com/pu20065226/p/8493316.html)
1.修改namenode节点的slave文件,增加新节点信息
[hadoop@hadoop-master hadoop]$ pwd /usr/hadoop/hadoop-2.7.5/etc/hadoop [hadoop@hadoop-master hadoop]$ cat slaves slave1 hadoop-master [hadoop@hadoop-master hadoop]$
2.启动新datanode的datanode和nodemanger进程
先确认namenode和当前的datanode中,etc/hoadoop/excludes文件中无待加入的主机,再进行下面操作
[hadoop@slave2 hadoop-2.7.5]$ sbin/hadoop-daemon.sh start datanode starting datanode, logging to /usr/hadoop/hadoop-2.7.5/logs/hadoop-hadoop-datanode-slave2.out [hadoop@slave2 hadoop-2.7.5]$ sbin/yarn-daemon.sh start nodemanager starting datanode, logging to /usr/hadoop/hadoop-2.7.5/logs/yarn-hadoop-datanode-slave2.out [hadoop@slave2 hadoop-2.7.5]$ 91284 SecondaryNameNode
90979 NameNode
91519 ResourceManager
41768 DataNode
41899 NodeManager
41999 Jps [hadoop@slave2 ~]$
3.在NameNode上刷新节点
[hadoop@hadoop-master ~]$ hdfs dfsadmin -refreshNodes Refresh nodes successful [hadoop@hadoop-master ~]$sbin/start-balancer.sh
4.在namenode查看当前集群情况,
确认节点已经正常加入
[hadoop@hadoop-master hadoop-2.7.5]$ hdfs dfsadmin -report Configured Capacity: 58663657472 (54.63 GB) Present Capacity: 35990061540 (33.52 GB) DFS Remaining: 35989540864 (33.52 GB) DFS Used: 520676 (508.47 KB) DFS Used%: 0.00% Under replicated blocks: 12 Blocks with corrupt replicas: 0 Missing blocks: 0 Missing blocks (with replication factor 1): 0 ------------------------------------------------- Live datanodes (2): Name: 192.168.48.129:50010 (hadoop-master) Hostname: hadoop-master Decommission Status : Normal Configured Capacity: 38588669952 (35.94 GB) DFS Used: 213476 (208.47 KB) Non DFS Used: 16331292188 (15.21 GB) DFS Remaining: 22257164288 (20.73 GB) DFS Used%: 0.00% DFS Remaining%: 57.68% Configured Cache Capacity: 0 (0 B) Cache Used: 0 (0 B) Cache Remaining: 0 (0 B) Cache Used%: 100.00% Cache Remaining%: 0.00% Xceivers: 1 Last contact: Mon Mar 19 19:54:45 PDT 2018 Name: 192.168.48.132:50010 (slave1) Hostname: slave1 Decommission Status : Normal Configured Capacity: 20074987520 (18.70 GB) DFS Used: 307200 (300 KB) Non DFS Used: 6342303744 (5.91 GB) DFS Remaining: 13732376576 (12.79 GB) DFS Used%: 0.00% DFS Remaining%: 68.41% Configured Cache Capacity: 0 (0 B) Cache Used: 0 (0 B) Cache Remaining: 0 (0 B) Cache Used%: 100.00% Cache Remaining%: 0.00% Xceivers: 1 Last contact: Mon Mar 19 19:54:46 PDT 2018
网页查看
弊端(来源网络):首先NameNode将文件命名空间的状态保存在状态中,比如哪个文件块在哪个datanode上,由于在较大的hadoop集群中,会存在很多文件块,这样就会占用NameNode很大的内存,所以不会浪费NameNode的计算资源 其次,对于长时间运行的集群来说,NameNode一致将命名空间的状态变化写入edits日志文件,时间久了该文件也会很大,只要将NameNode的存储规划的合理,是不会浪费存储的
hadoop集群重要的是保证namdenode的长期稳定运行,把datanode放在namenode上,增加了namenode的负担,datanode占用大量的磁盘io,网络流量可能导致hdfs响应慢,错误率增加,要进行大量错误恢复,这影响集群的稳定性。
至于namenode是否浪费资源,namenode要维护整个集群的(一,二级关系)一、目录树,文件元信息,二、块到数据节点的映射。对于一定规模的集群要消耗大量的内存,cpu资源。namenode还会把一级关系持久化到镜像文件中,并且用编辑日志保证数据被持久化。这也会占用大量的存储资源,同事,有大量的datanode节点,可能还有大量的客户端同namenode进行网络通信。综上,namenode资源并没浪费!